A386785
a(n) = n^4*sigma_5(n).
Original entry on oeis.org
0, 1, 528, 19764, 270592, 1953750, 10435392, 40356008, 138547200, 389021373, 1031580000, 2357962332, 5347980288, 10604527934, 21307972224, 38613915000, 70936231936, 118587960018, 205403284944, 322687828100, 528669120000, 797596142112, 1245004111296, 1801152941304, 2738246860800
Offset: 0
-
[0] cat [n^4*DivisorSigma(5, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^4*DivisorSigma[5, n], {n, 0, 30}]
(* or *)
nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10, {k, 1, nmax}], {x, 0, nmax}], x]
(* or *)
terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(4*E2[x]^3*E4[x]^2 + 2*E2[x]*E4[x]^3 - E2[x]^4*E6[x] - 6*E2[x]^2*E4[x]*E6[x] - E4[x]^2*E6[x] + 2*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]
A282753
Expansion of phi_{9, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 516, 19692, 264208, 1953150, 10161072, 40353656, 135274560, 387597717, 1007825400, 2357947812, 5202783936, 10604499542, 20822486496, 38461429800, 69260574976, 118587876786, 200000421972, 322687698140, 516037855200, 794644193952, 1216701070992
Offset: 0
Cf.
A013955 (sigma_7(n)),
A282060 (n*sigma_7(n)), this sequence (n^2*sigma_7(n)).
-
Table[If[n>0, n^2 * DivisorSigma[7, n], 0], {n, 0, 22}] (* Indranil Ghosh, Mar 12 2017 *)
nmax = 40; CoefficientList[Series[Sum[k^9*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
for(n=0, 22, print1(if(n==0, 0, n^2 * sigma(n, 7)),", ")) \\ Indranil Ghosh, Mar 12 2017
A282781
Expansion of phi_{8, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 264, 6588, 67648, 390750, 1739232, 5765144, 17318400, 43224597, 103158000, 214360212, 445665024, 815732918, 1521998016, 2574261000, 4433514496, 6975762354, 11411293608, 16983569900, 26433456000, 37980768672, 56591095968, 78310997448
Offset: 0
Cf.
A282211 (phi_{4, 3}),
A282213 (phi_{6, 3}), this sequence (phi_{8, 3}).
Cf.
A001160 (sigma_5(n)),
A282050 (n*sigma_5(n)),
A282751 (n^2*sigma_5(n)), this sequence (n^3*sigma_5(n)).
-
a[0]=0;a[n_]:=(n^3)*DivisorSigma[5,n];Table[a[n],{n,0,23}] (* Indranil Ghosh, Feb 21 2017 *)
nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
a(n) = if (n==0, 0, n^3*sigma(n, 5)); \\ Michel Marcus, Feb 21 2017
A386777
a(n) = n^2*sigma_6(n).
Original entry on oeis.org
0, 1, 260, 6570, 66576, 390650, 1708200, 5764850, 17043520, 43105851, 101569000, 214359002, 437404320, 815730890, 1498861000, 2566570500, 4363141376, 6975757730, 11207521260, 16983563402, 26007914400, 37875064500, 55733340520, 78310985810, 111975926400, 152597656875
Offset: 0
-
[0] cat [n^2*DivisorSigma(6, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^2*DivisorSigma[6, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
A386778
a(n) = n^2*sigma_8(n).
Original entry on oeis.org
0, 1, 1028, 59058, 1052688, 9765650, 60711624, 282475298, 1077952576, 3487315923, 10039088200, 25937424722, 62169647904, 137858492018, 290384606344, 576739757700, 1103823438080, 2015993900738, 3584960768844, 6131066258162, 10280182567200, 16682426149284, 26663672614216
Offset: 0
-
[0] cat [n^2*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^2*DivisorSigma[8, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
A280021
Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0
Cf.
A013957 (sigma_9(n)),
A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
-
Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
-
for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017
Showing 1-6 of 6 results.
Comments