A386787
a(n) = n^4*sigma_7(n).
Original entry on oeis.org
0, 1, 2064, 177228, 4227328, 48828750, 365798592, 1977329144, 8657571840, 31395415077, 100782540000, 285311685252, 749200886784, 1792160422598, 4081207353216, 8653821705000, 17730707193856, 34271896391154, 64800136718928, 116490259028540, 206415142080000, 350438089532832
Offset: 0
-
[0] cat [n^4*DivisorSigma(7, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
-
Table[n^4*DivisorSigma[7, n], {n, 0, 30}]
(* or *)
nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 2036*x^k + 152637*x^(2*k) + 2203488*x^(3*k) + 9738114*x^(4*k) + 15724248*x^(5*k) + 9738114*x^(6*k) + 2203488*x^(7*k) + 152637*x^(8*k) + 2036*x^(9*k) + x^(10*k))/(1 - x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x]
(* or *)
terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(33*E2[x]^4*E4[x]^2 + 110*E2[x]^2*E4[x]^3 + 13*E4[x]^4 - 132*E2[x]^3*E4[x]*E6[x] - 132*E2[x]*E4[x]^2*E6[x] + 88*E2[x]^2*E6[x]^2 + 20*E4[x]*E6[x]^2)/41472, {x, 0, terms}], x]
A282751
Expansion of phi_{7, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 132, 2196, 16912, 78150, 289872, 823592, 2164800, 4802733, 10315800, 19487292, 37138752, 62748686, 108714144, 171617400, 277094656, 410338962, 633960756, 893872100, 1321672800, 1808608032, 2572322544, 3404825976, 4753900800, 6105469375, 8282826552
Offset: 0
Cf.
A001160 (sigma_5(n)),
A282050 (n*sigma_5(n)), this sequence (n^2*sigma_5(n)).
-
Table[n^2 * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
nmax = 40; CoefficientList[Series[Sum[k^7*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
a(n) = if(n < 1, 0, n^2*sigma(n, 5)) \\ Andrew Howroyd, Jul 25 2018
A386781
a(n) = n^3*sigma_7(n).
Original entry on oeis.org
0, 1, 1032, 59076, 1056832, 9765750, 60966432, 282475592, 1082196480, 3488379453, 10078254000, 25937425932, 62433407232, 137858494046, 291514810944, 576921447000, 1108169199616, 2015993905362, 3600007595496, 6131066264660, 10320757104000, 16687528072992, 26767423561824
Offset: 0
-
[0] cat [n^3*DivisorSigma(7, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^3*DivisorSigma[7, n], {n, 0, 30}]
(* or *)
nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
(* or *)
terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(3*E2[x]^3*E4[x]^2 + 5*E2[x]*E4[x]^3 - 9*E2[x]^2*E4[x]*E6[x] - 3*E4[x]^2*E6[x] + 4*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]
A386777
a(n) = n^2*sigma_6(n).
Original entry on oeis.org
0, 1, 260, 6570, 66576, 390650, 1708200, 5764850, 17043520, 43105851, 101569000, 214359002, 437404320, 815730890, 1498861000, 2566570500, 4363141376, 6975757730, 11207521260, 16983563402, 26007914400, 37875064500, 55733340520, 78310985810, 111975926400, 152597656875
Offset: 0
-
[0] cat [n^2*DivisorSigma(6, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^2*DivisorSigma[6, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
A386778
a(n) = n^2*sigma_8(n).
Original entry on oeis.org
0, 1, 1028, 59058, 1052688, 9765650, 60711624, 282475298, 1077952576, 3487315923, 10039088200, 25937424722, 62169647904, 137858492018, 290384606344, 576739757700, 1103823438080, 2015993900738, 3584960768844, 6131066258162, 10280182567200, 16682426149284, 26663672614216
Offset: 0
-
[0] cat [n^2*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
-
Table[n^2*DivisorSigma[8, n], {n, 0, 30}]
nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]
A280021
Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0
Cf.
A013957 (sigma_9(n)),
A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
-
Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
-
for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017
Showing 1-6 of 6 results.
Comments