cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386786 a(n) = n^4*sigma_6(n).

Original entry on oeis.org

0, 1, 1040, 59130, 1065216, 9766250, 61495200, 282477650, 1090785280, 3491573931, 10156900000, 25937439242, 62986222080, 137858520410, 293776756000, 577478362500, 1116964192256, 2015993983970, 3631236888240, 6131066388122, 10403165760000, 16702903444500, 26974936811680
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(6, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
  • Mathematica
    Table[n^4*DivisorSigma[6, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 1013*x^k + 47840*x^(2*k) + 455192*x^(3*k) + 1310354*x^(4*k) + 1310354*x^(5*k) + 455192*x^(6*k) + 47840*x^(7*k) + 1013*x^(8*k) + x^(9*k))/(1 - x^k)^11, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 1013*x^k + 47840*x^(2*k) + 455192*x^(3*k) + 1310354*x^(4*k) + 1310354*x^(5*k) + 455192*x^(6*k) + 47840*x^(7*k) + 1013*x^(8*k) + x^(9*k))/(1 - x^k)^11.
a(n) = n^4*A013954(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-10). - R. J. Mathar, Aug 03 2025

A386778 a(n) = n^2*sigma_8(n).

Original entry on oeis.org

0, 1, 1028, 59058, 1052688, 9765650, 60711624, 282475298, 1077952576, 3487315923, 10039088200, 25937424722, 62169647904, 137858492018, 290384606344, 576739757700, 1103823438080, 2015993900738, 3584960768844, 6131066258162, 10280182567200, 16682426149284, 26663672614216
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^2*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^2*DivisorSigma[8, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^10*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = n^2*A013956(n).
Dirichlet g.f.: zeta(s-2)*zeta(s-10). - R. J. Mathar, Aug 03 2025

A386780 a(n) = n^3*sigma_6(n).

Original entry on oeis.org

0, 1, 520, 19710, 266304, 1953250, 10249200, 40353950, 136348160, 387952659, 1015690000, 2357949022, 5248851840, 10604501570, 20984054000, 38498557500, 69810262016, 118587881410, 201735382680, 322687704638, 520158288000, 795376354500, 1226133491440, 1801152673630
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^3*DivisorSigma(6, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^3*DivisorSigma[6, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^9*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^9*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = n^3*A013954(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-9). - R. J. Mathar, Aug 03 2025
Showing 1-3 of 3 results.