cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386787 a(n) = n^4*sigma_7(n).

Original entry on oeis.org

0, 1, 2064, 177228, 4227328, 48828750, 365798592, 1977329144, 8657571840, 31395415077, 100782540000, 285311685252, 749200886784, 1792160422598, 4081207353216, 8653821705000, 17730707193856, 34271896391154, 64800136718928, 116490259028540, 206415142080000, 350438089532832
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(7, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
  • Mathematica
    Table[n^4*DivisorSigma[7, n], {n, 0, 30}]
    (* or *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 2036*x^k + 152637*x^(2*k) + 2203488*x^(3*k) + 9738114*x^(4*k) + 15724248*x^(5*k) + 9738114*x^(6*k) + 2203488*x^(7*k) + 152637*x^(8*k) + 2036*x^(9*k) + x^(10*k))/(1 - x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x]
    (* or *)
    terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(33*E2[x]^4*E4[x]^2 + 110*E2[x]^2*E4[x]^3 + 13*E4[x]^4 - 132*E2[x]^3*E4[x]*E6[x] - 132*E2[x]*E4[x]^2*E6[x] + 88*E2[x]^2*E6[x]^2 + 20*E4[x]*E6[x]^2)/41472, {x, 0, terms}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 2036*x^k + 152637*x^(2*k) + 2203488*x^(3*k) + 9738114*x^(4*k) + 15724248*x^(5*k) + 9738114*x^(6*k) + 2203488*x^(7*k) + 152637*x^(8*k) + 2036*x^(9*k) + x^(10*k))/(1 - x^k)^12.
a(n) = (33*A386815(n) + 110*A386816(n) + 13*A282012(n) - 132*A386817(n) - 132*A282596(n) + 88*A386818(n) + 20*A282287(n))/41472.
a(n) = n^4*A013955(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-11). - R. J. Mathar, Aug 03 2025

A386780 a(n) = n^3*sigma_6(n).

Original entry on oeis.org

0, 1, 520, 19710, 266304, 1953250, 10249200, 40353950, 136348160, 387952659, 1015690000, 2357949022, 5248851840, 10604501570, 20984054000, 38498557500, 69810262016, 118587881410, 201735382680, 322687704638, 520158288000, 795376354500, 1226133491440, 1801152673630
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^3*DivisorSigma(6, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^3*DivisorSigma[6, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^9*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^9*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = n^3*A013954(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-9). - R. J. Mathar, Aug 03 2025

A386782 a(n) = n^3*sigma_8(n).

Original entry on oeis.org

0, 1, 2056, 177174, 4210752, 48828250, 364269744, 1977327086, 8623620608, 31385843307, 100390882000, 285311671942, 746035774848, 1792160396234, 4065384488816, 8651096365500, 17661175009280, 34271896312546, 64529293839192, 116490258905078, 205603651344000, 350330949134964
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^3*DivisorSigma(8, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^3*DivisorSigma[8, n], {n, 0, 30}]
    nmax = 30; CoefficientList[Series[Sum[k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^11*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = n^3*A013956(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-11). - R. J. Mathar, Aug 03 2025

A386813 Coefficients in q-expansion of E_2^3 * E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 408, 28872, -2685984, 24039336, 776610576, -657274464, -112765274688, -1315204139160, -9184174537416, -47705529895632, -201727238619744, -730623451715808, -2340991131399984, -6787572064867008, -18105120840067776, -44991518932447512, -105189400371536208, -233200610257765464
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^3*E4[x]^2, {x, 0, terms}], x]
Showing 1-4 of 4 results.