A386749 a(n) = n*sigma_4(n).
0, 1, 34, 246, 1092, 3130, 8364, 16814, 34952, 59787, 106420, 161062, 268632, 371306, 571676, 769980, 1118480, 1419874, 2032758, 2476118, 3417960, 4136244, 5476108, 6436366, 8598192, 9781275, 12624404, 14528268, 18360888, 20511178, 26179320, 28629182, 35791392, 39621252
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..9000
Crossrefs
Programs
-
Magma
[0] cat [n*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
-
Mathematica
Table[n*DivisorSigma[4, n], {n, 0, 50}] nmax = 50; CoefficientList[Series[x*Sum[k^5*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
a(n) = if (n, n*sigma(n,4), 0); \\ Michel Marcus, Aug 02 2025
Formula
G.f.: Sum_{k>=1} k^5*x^(k-1)/(1 - x^k)^2.
a(n) = n*A001159(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-5). - R. J. Mathar, Aug 03 2025