A337032
a(n) = (n*sigma_9(n) - tau(n))/7 = (A282254(n) - A000594(n))/7, where tau is Ramanujan's tau, sigma_9(n) = Sum_{d divides n} d^9.
Original entry on oeis.org
0, 150, 8400, 150300, 1394400, 8656200, 40356000, 153679800, 498153600, 1431378900, 3705270000, 8863150800, 19694152800, 41402744400, 82382680800, 157380332400, 288000115200, 511088547150, 875865085200, 1465721632200, 2382961862400, 3801687211800, 5918070367200, 9075809181600
Offset: 1
a(2) = (n*sigma_9(2) - tau(2))/7 = (2*(1^9+2^9) - (-24))/7 = 1050/7 = 150;
a(3) = (n*sigma_9(3) - tau(3))/7 = (3*(1^9+3^9) - 252)/7 = 58800/7 = 8400.
-
a[n_] := (n * DivisorSigma[9, n] - RamanujanTau[n]) / 7; Array[a, 24] (* Amiram Eldar, Jan 10 2025 *)
-
a(n) = (n*sigma(n, 9) - polcoeff( x * eta(x + x * O(x^n))^24, n))/7;
A282548
Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0
Cf.
A064987 (phi_{2, 1}),
A281372 (phi_{4, 1}),
A282050 (phi_{6, 1}),
A282060 (phi_{8, 1}),
A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
-
Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
-
a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018
A282597
Expansion of phi_{14, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 16386, 4782972, 268468228, 6103515630, 78373779192, 678223072856, 4398583447560, 22876806803877, 100012207113180, 379749833583252, 1284076017413616, 3937376385699302, 11113363271818416, 29192944359852360, 72066391204823056, 168377826559400946
Offset: 0
Cf.
A064987 (phi_{2, 1}),
A281372 (phi_{4, 1}),
A282050 (phi_{6, 1}),
A282060 (phi_{8, 1}),
A282254 (phi_{10, 1}),
A282548 (phi_{12, 1}), this sequence (phi_{14, 1}).
-
Table[n * DivisorSigma[13, n], {n, 0, 17}] (* Amiram Eldar, Sep 06 2023 *)
-
a(n) = if(n < 1, 0, n*sigma(n, 13)) \\ Andrew Howroyd, Jul 25 2018
A289745
Coefficients in expansion of -q*E'_10 where E_10 is the Eisenstein Series (A013974).
Original entry on oeis.org
264, 270864, 15589728, 277365792, 2578126320, 15995060928, 74573467584, 284022573120, 920557851048, 2645157604320, 6847480097568, 16379004749184, 36394641851568, 76512377741184, 152243515448640, 290839114879104, 532222389723024, 944492355175248
Offset: 1
A280021
Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0
Cf.
A013957 (sigma_9(n)),
A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
-
Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
-
for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017
A282777
Expansion of phi_{16, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 65538, 43046724, 4295098372, 152587890630, 2821196197512, 33232930569608, 281483566907400, 1853020317992013, 10000305176108940, 45949729863572172, 184889914172333328, 665416609183179854, 2178019803670969104, 6568408813691796120
Offset: 0
- George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012. See p. 212.
Cf.
A064987 (phi_{2, 1}),
A281372 (phi_{4, 1}),
A282050 (phi_{6, 1}),
A282060 (phi_{8, 1}),
A282254 (phi_{10, 1}),
A282548 (phi_{12, 1}),
A282597 (phi_{14, 1}), this sequence (phi_{16, 1}).
-
Table[If[n==0, 0, n * DivisorSigma[15, n]], {n, 0, 15}] (* Indranil Ghosh, Mar 11 2017 *)
-
for(n=0, 15, print1(if(n==0, 0, n * sigma(n, 15)), ", ")) \\ Indranil Ghosh, Mar 11 2017
Showing 1-6 of 6 results.
Comments