A282097 Coefficients in q-expansion of (3*E_2*E_4 - 2*E_6 - E_2^3)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
0, 1, 12, 36, 112, 150, 432, 392, 960, 1053, 1800, 1452, 4032, 2366, 4704, 5400, 7936, 5202, 12636, 7220, 16800, 14112, 17424, 12696, 34560, 19375, 28392, 29160, 43904, 25230, 64800, 30752, 64512, 52272, 62424, 58800, 117936, 52022, 86640, 85176, 144000, 70602
Offset: 0
Examples
a(6) = 1^3*6^2 + 2^3*3^2 + 3^3*2^2 + 6^3*1^2 = 432.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[0] cat [n^2*DivisorSigma(1, n): n in [1..50]]; // Vincenzo Librandi, Mar 01 2018
-
Mathematica
a[0]=0;a[n_]:=(n^2)*DivisorSigma[1,n];Table[a[n],{n,0,41}] (* Indranil Ghosh, Feb 21 2017 *) terms = 42; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[(3*Ei[2]*Ei[4] - 2*Ei[6] - Ei[2]^3)/1728 + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
-
PARI
a(n) = if (n==0, 0, n^2*sigma(n)); \\ Michel Marcus, Feb 21 2017
Formula
G.f.: phi_{3, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = n^2*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: Sum_{k>=1} k^3*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, May 02 2018
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-3).
Sum_{k=1..n} a(k) ~ (Pi^2/24) * n^4. (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= i, j, k <= n} sigma_2( gcd(i, j, k, n) ).
a(n) = Sum_{1 <= i, j <= n} sigma_3( gcd(i, j, n) ).
Comments