cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A029830 Eisenstein series E_20(q) (alternate convention E_10(q)), multiplied by 174611.

Original entry on oeis.org

174611, 13200, 6920614800, 15341851377600, 3628395292275600, 251770019531263200, 8043563916910526400, 150465416446925500800, 1902324110996589786000, 17831242688625346952400, 132000251770026451864800, 807299993919072011054400, 4217144038884527916580800, 19297347832955888660949600
Offset: 0

Views

Author

Keywords

References

  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), this sequence (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24).
Cf. A282015 (E_4^5), A282292 (E_4^2*E_6^2 = E_10^2).

Programs

  • Mathematica
    terms = 14;
    E20[x_] = 174611 + 13200*Sum[k^19*x^k/(1 - x^k), {k, 1, terms}];
    E20[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
  • PARI
    a(n)=if(n<1,174611*(n==0),13200*sigma(n,19))

Formula

a(n) = 53361*A282015(n) + 121250*A282292(n). - Seiichi Manyama, Feb 11 2017

A282012 Coefficients in q-expansion of E_4^4, where E_4 is the Eisenstein series shown in A004009.

Original entry on oeis.org

1, 960, 354240, 61543680, 4858169280, 137745912960, 2120861041920, 21423820362240, 158753769048000, 928983317334720, 4512174992346240, 18847874280625920, 69518972236842240, 230951926208599680, 701949379778818560, 1975788826748167680
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2017

Keywords

Comments

Also coefficients in q-expansion of E_8^2.

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 207.

Crossrefs

Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), this sequence (E_4^4), A282015 (E_4^5).
Cf. A281374 (E_2^2), A008410 (E_4^2), A280869 (E_6^2), this sequence (E_8^2), A282292 (E_10^2).

Programs

  • Mathematica
    terms = 16;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: (1 + 240 Sum_{i>=1} i^3 q^i/(1-q^i))^4.
16320 * A013963(n) = 3617 * a(n) - 3456000 * A027364(n) for n > 0.

A282332 Coefficients in q-expansion of E_4^3*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -288, -325728, 11700864, 35176468896, 6601058210880, 438061091013504, 15173572442740992, 327251435243536800, 4913611331706352224, 55439979246339307200, 496425441863436557184, 3672747479405396310912, 23148319784349233726784
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^2).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^3*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282357 Coefficients in q-expansion of E_4^2*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1032, 48312, 171162336, -6444771144, -10105554483504, -1037089473751584, -48959817978105408, -1378102838778701640, -26186640301645703016, -364779940958775418032, -3952291567255306906464, -34798629548716507265568, -257403564989318828310384
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2017

Keywords

Crossrefs

Cf. A008410 (E_4^2 = E_8), A058550 (E_4^2*E_6 = E_14), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^2*E_6^3).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^2*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282403 Coefficients in q-expansion of E_4^4*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -48, -392688, -67089216, 37279185936, 15066490704480, 2098369148842944, 134803101024250752, 4960096515113176080, 119289357755096403984, 2051412780505054295520, 26894040676649639982144, 281804014682888704101312
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), this sequence (E_4^4*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^4* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282461 Coefficients in q-expansion of E_4^3*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -792, -197208, 180534816, 34731625896, -11282282306064, -3475192229286624, -319729598062193088, -15436589476561121880, -469831003553540798136, -9973761497118317484432, -158213220814147434639264, -1972935965978751882433248
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A013974 (E_4*E_6 = E_10), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^3 = E_10^3).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^3* E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282541 Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 192, -402048, -161431296, 20329262976, 23865942948480, 5794392238723584, 671204645516954112, 41947216018774335360, 1615253348424607402944, 42337765240473386384640, 812656088633074046171904, 12060155362281020231526912
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282543 Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1536, 551808, 163854336, -93387735168, -9709554816000, 4142226444876288, 642510156233453568, 41792421673548259200, 1615606968766288470528, 42343208407470359036160, 812663841518551604717568, 12060089370317565140003328
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A008410 (E_4^2 = E_8), A058550 (E_4^2*E_6 = E_14), A282292 (E_4^2*E_6^2 = E_10^2), A282357 (E_4^2*E_6^3), this sequence (E_4^2*E_6^4).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-8 of 8 results.