A282356
Eisenstein series E_26(q) (alternate convention E_13(q)), multiplied by 657931.
Original entry on oeis.org
657931, -24, -805306392, -20334926626656, -27021598569529368, -7152557373046875024, -682326933054044766048, -32185646871935157619392, -906694391732570450559000, -17229551704624797057112632, -240000007152557373852181392
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24), this sequence (657931*E_26).
-
terms = 11;
E26[x_] = 657931 - 24*Sum[k^25*x^k/(1 - x^k), {k, 1, terms}];
E26[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282543
Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1536, 551808, 163854336, -93387735168, -9709554816000, 4142226444876288, 642510156233453568, 41792421673548259200, 1615606968766288470528, 42343208407470359036160, 812663841518551604717568, 12060089370317565140003328
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-2 of 2 results.