A282401
Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.
Original entry on oeis.org
3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26), this sequence (3392780147*E_28).
-
terms = 10;
E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282182
Eisenstein series E_30(q) (alternate convention E_15(q)), multiplied by 1723168255201.
Original entry on oeis.org
1723168255201, -171864, -92268782591832, -11795091175438423776, -49536425459206569762648, -32012164592742919922046864, -6332441368275869747902027488, -553385882817076320573218661312, -26594665913504249904864455466840
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26),
A282401 (3392780147*E_28), this sequence (1723168255201*E_30).
-
terms = 9;
E30[x_] = 1723168255201 - 171864*Sum[k^29*x^k/(1 - x^k), {k, 1, terms}];
E30[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282540
Eisenstein series E_32(q) (alternate convention E_16(q)), multiplied by 7709321041217.
Original entry on oeis.org
7709321041217, 32640, 70093866303360, 20160859654708062720, 150525431711563807489920, 151991844177246093750032640, 43295116458269350559666465280, 5149788469617367127914995164160, 323250903208723929093223124860800
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26),
A282401 (3392780147*E_28),
A282182 (1723168255201*E_30), this sequence (7709321041217*E_32).
-
terms = 9;
E32[x_] = 7709321041217 + 32640*Sum[k^31*x^k/(1 - x^k), {k, 1, terms}];
E32[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Showing 1-3 of 3 results.