cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282401 Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.

Original entry on oeis.org

3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), A279892 (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24), A282356 (657931*E_26), this sequence (3392780147*E_28).
Cf. A282402 (E_4^7), A282403 (E_4^4*E_6^2), A282404 (E_4*E_6^4).

Programs

  • Mathematica
    terms = 10;
    E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
    E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) = 489693897*A282402(n) + 2507636250*A282403(n) + 395450000*A282404(n).

A282541 Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 192, -402048, -161431296, 20329262976, 23865942948480, 5794392238723584, 671204645516954112, 41947216018774335360, 1615253348424607402944, 42337765240473386384640, 812656088633074046171904, 12060155362281020231526912
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Showing 1-2 of 2 results.