cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280022 Expansion of phi_{5, 4}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 48, 324, 1792, 3750, 15552, 19208, 61440, 85293, 180000, 175692, 580608, 399854, 921984, 1215000, 2031616, 1503378, 4094064, 2606420, 6720000, 6223392, 8433216, 6716184, 19906560, 12109375, 19192992, 21257640, 34420736, 21218430, 58320000, 29552672
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. this sequence (phi_{5, 4}), A280025 (phi_{7, 4}).
Cf. A282101 (E_2*E_4^2), A282595 (E_2^2*E_6), A282586 (E_2^3*E_4), A013974 (E_4*E_6 = E_10), A282431 (E_2^5).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), A282097 (n^2*sigma(n)), A282211 (n^3*sigma(n)), this sequence (n^4*sigma(n)).
Cf. A353908.

Programs

  • Mathematica
    Table[n^4 * DivisorSigma[1, n], {n, 0, 32}] (* Amiram Eldar, Oct 31 2023 *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n^4 * sigma(n)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = n^4*A000203(n) for n > 0.
a(n) = (15*A282101(n) - 20*A282595(n) + 10*A282586(n) - 4*A013974(n) - A282431(n))/20736.
Sum_{k=1..n} a(k) ~ c * n^6, where c = Pi^2/36 = 0.274155... (A353908). - Amiram Eldar, Dec 08 2022
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(4*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-5). (End)
G.f.: Sum_{k>=1} k^4*x^k*(1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6. - Vaclav Kotesovec, Aug 02 2025

A282433 Coefficients in q-expansion of E_6^5, where E_6 is the Eisenstein series A013973.

Original entry on oeis.org

1, -2520, 2457000, -1113204960, 199879986600, 4992350445936, -3054519828108000, -316433406335739840, -15444821445342229080, -469944493113793897080, -9973874479528786860432, -158211337782226162119840, -1972932224893221543809760
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2017

Keywords

Crossrefs

Cf. A282431 (E_2^5), A282015 (E_4^5), this sequence (E_6^5).
Cf. A013973 (E_6), A280869 (E_6^2), A282253 (E_6^3), A282331 (E_6^4), this sequence (E_6^5).

Programs

  • Mathematica
    terms = 13;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A308285 Coefficients in q-expansion of E_2^6, where E_2 is the Eisenstein series A006352.

Original entry on oeis.org

1, -144, 8208, -225216, 2634192, 1488672, -209742912, -503961984, 8575185744, 91347182640, 524570699232, 2230073940672, 7794083954880, 23627036677536, 64145226215808, 159373702203264, 368012313906768, 798872890993632, 1644874069475664, 3234829827767616
Offset: 0

Views

Author

Seiichi Manyama, May 18 2019

Keywords

Crossrefs

E_2^b: A006352 (b=1), A281374 (b=2), A282018 (b=3), A282210 (b=4), A282431 (b=5), this sequence (b=6).
Showing 1-3 of 3 results.