A282431
Coefficients in q-expansion of E_2^5, where E_2 is the Eisenstein series A006352.
Original entry on oeis.org
1, -120, 5400, -104160, 511800, 6770736, -19504800, -452207040, -2959622280, -12932941080, -44497080432, -129918587040, -335811977760, -788655411600, -1714912983360, -3498061536576, -6761506680840, -12481939678320, -22138262633160, -37922739116640
Offset: 0
-
terms = 20;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^5 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282182
Eisenstein series E_30(q) (alternate convention E_15(q)), multiplied by 1723168255201.
Original entry on oeis.org
1723168255201, -171864, -92268782591832, -11795091175438423776, -49536425459206569762648, -32012164592742919922046864, -6332441368275869747902027488, -553385882817076320573218661312, -26594665913504249904864455466840
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26),
A282401 (3392780147*E_28), this sequence (1723168255201*E_30).
-
terms = 9;
E30[x_] = 1723168255201 - 171864*Sum[k^29*x^k/(1 - x^k), {k, 1, terms}];
E30[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Showing 1-2 of 2 results.