cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281378 Palindromic numbers which are also palindromic in their binary reflected Gray code representation.

Original entry on oeis.org

0, 1, 2, 5, 6, 66, 77, 626, 5005, 7777, 22122, 64446, 87978, 399993, 1287821, 5614165, 5679765, 6407046, 6865686, 7107017, 8349438, 8547458, 282777282, 1220330221, 43474247434, 43833533834, 64630703646, 68622322686, 73855855837, 1249451549421, 2468208028642
Offset: 1

Views

Author

Indranil Ghosh, Jan 20 2017

Keywords

Examples

			626 is in the sequence because binary reflected Gray code for 626 is '1101001011' and both 626 and '1101001011' are palindromics.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And[Reverse@ # == # &@ IntegerDigits@ #, Reverse@ # == # &@ Abs[Prepend[Most@ #, 0] - #] &@ IntegerDigits[#, 2]] &] (* Michael De Vlieger, Jan 21 2017 *)
  • PARI
    lista(nn) = {my(v, w); for(k=0, nn, if((w=digits(k))==Vecrev(w) && (v=binary(bitxor(k, k>>1)))==Vecrev(v), print1(k, ", "))); } \\ Jinyuan Wang, Mar 01 2020
  • Python
    def G(n):
        return bin(n^(n//2))[2:]
    i=1
    j=1
    while j<=23:
        if  i==int(str(i)[::-1]) and G(i)==G(i)[::-1]:
            print(str(j)+" "+str(i))
            j+=1
        i+=1
    

Extensions

0 and more terms added by Chai Wah Wu, Jan 23 2017