cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352697 a(n) = A037237(n-1) - A281434(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 6, 0, 3, 0, 6, 0, 4, 0, 6, 0, 5, 1, 7, 2, 6, 2, 7, 1, 8, 0, 8, 0, 8, 0, 11, 0, 9, 1, 10, 0, 11, 0, 11, 0, 11, 0, 14, 3, 12, 0, 13, 0, 13, 0, 15, 0, 15, 0, 15, 0, 16, 0, 18, 0, 16, 0, 17, 0, 17, 0, 19, 0, 18, 2, 19, 0, 19, 0, 20, 2
Offset: 1

Views

Author

Vladimir Reshetnikov, Mar 29 2022

Keywords

Comments

It appears that this sequence has an infinite number of zeros, i.e., A281434(n) agrees with A037237(n-1) at an infinite number of indices; also, it seems that a(n) = O(n).

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Table[(4 n + 3 n^2 + 2 n^3)/3, {n, m}] - Length /@ Rest[NestList[Expand[D[#, x]] &, x^x^x, m]]]

A293239 Number of terms in the fully expanded n-th derivative of x^x.

Original entry on oeis.org

1, 2, 4, 7, 11, 15, 21, 28, 35, 43, 53, 64, 76, 88, 102, 117, 133, 149, 167, 186, 206, 226, 248, 271, 295, 319, 345, 372, 400, 428, 458, 489, 521, 553, 587, 622, 658, 694, 732, 771, 811, 851, 893, 936, 980, 1024, 1070, 1117, 1165, 1213, 1263, 1314, 1366, 1418
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 03 2017

Keywords

Comments

Conjecture: the 2nd differences are eventually periodic: 1, 1, 1, 0, 2, 1, 0, 1, [2, 1, 1, 0].

Examples

			For n = 3, the 3rd derivative of x^x is x^x + 3*x^x*log(x) + 3*x^x*log^2(x) + x^x*log^3(x) + 3*x^(x-1) + 3*x^(x-1)*log(x) - x^(x-2), so a(3) = 7.
		

Crossrefs

Cf. A281434.

Programs

  • Mathematica
    Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x, 53]]]

Formula

Conjecture: a(n) ~ n^2/2. - Vaclav Kotesovec, Oct 05 2017
Conjectures from Colin Barker, Oct 05 2017: (Start)
G.f.: (1 + x^2 + x^3 + x^6 - x^8 + x^9 + x^12 - x^13) / ((1 - x)^2*(1 - x^4)).
a(n) = (5 + (-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n + 4*n^2) / 8 for n>7 where i=sqrt(-1).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.
(End)

A290268 Number of terms in the fully expanded n-th derivative of x^(x^2).

Original entry on oeis.org

1, 2, 5, 8, 13, 18, 25, 31, 41, 49, 61, 71, 85, 97, 113, 126, 145, 160, 181, 198, 221, 240, 265, 285, 313, 335, 365, 389, 421, 447, 481, 508, 545, 574, 613, 644, 685, 718, 761, 795, 841, 877, 925, 963, 1013, 1053, 1105, 1146, 1201, 1244, 1301, 1346, 1405, 1452
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 06 2017

Keywords

Examples

			For n = 2, the 2nd derivative of x^(x^2) is 3*x^(x^2) + 2*x^(x^2)*log(x) + x^(x^2+2) + 4*x^(x^2+2)*log(x) + 4*x^(x^2+2)*log^2(x), so a(2) = 5.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, nops(expand(diff(x^(x^2), x$n)))):
    seq(a(n), n = 0..30); # Peter Luschny, Oct 08 2017
  • Mathematica
    Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x^2, 53]]]
    (* Use it only to check the conjecture, not to compute the values: *)
    LinearRecurrence[{0,2,0,-1,0,0,0,1,0,-2,0,1}, {1,2,5,8,13,18,25,31,41,49,61,71}, 54] (* Peter Luschny, Oct 09 2017 *)

Formula

Conjectured g.f.: (1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + x^7 + 2*x^8 + x^9)/((1 - x)*(1 - x^2)*(1 - x^8)).
Conjecture: a(n) = (8*n^2 + 15*n + 14 + (n + 2)*(-1)^n + (2 - 4*sqrt(2)*sin(Pi*n/4))*sin(Pi*n/2))/16.
From Peter Luschny, Oct 09 2017: (Start) Assuming the conjecture:
a(n) = n^2/2 + n + 1 - (n mod 2)*(1/2 + floor((n + 1)/8)).
a(2*n) = A001844(n) and a(2*n + 1) = A293296(n + 1).
Signature of the linear recurrence: {0, 2, 0, -1, 0, 0, 0, 1, 0, -2, 0, 1}. (End)
Showing 1-3 of 3 results.