cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293472 Triangle read by rows, coefficients of polynomials in t = log(x) of the n-th derivative of x^x, evaluated at x = 1. T(n, k) with n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 8, 12, 12, 4, 1, 10, 40, 30, 20, 5, 1, 54, 60, 120, 60, 30, 6, 1, -42, 378, 210, 280, 105, 42, 7, 1, 944, -336, 1512, 560, 560, 168, 56, 8, 1, -5112, 8496, -1512, 4536, 1260, 1008, 252, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Oct 10 2017

Keywords

Examples

			Triangle starts:
0: [  1]
1: [  1,   1]
2: [  2,   2,   1]
3: [  3,   6,   3,   1]
4: [  8,  12,  12,   4,   1]
5: [ 10,  40,  30,  20,   5,  1]
6: [ 54,  60, 120,  60,  30,  6, 1]
7: [-42, 378, 210, 280, 105, 42, 7, 1]
...
For n = 3, the 3rd derivative of x^x is p(3,x,t) = x^x*t^3 + 3*x^x*t^2 + 3*x^x*t + x^x + 3*x^x*t/x + 3*x^x/x - x^x/x^2 where log(x) is substituted by t. Evaluated at x = 1: p(3,1,t) = 3 + 6*t + 3*t^2 + t^3 with coefficients [3, 6, 3, 1].
		

Crossrefs

More generally, consider the n-th derivative of x^(x^m). This is case m = 1.
m | t = -1 | t = 0 | t = 1 | p(n, t) | related
m = 2 | - | A215524 | - | A293473 | A290268
m = 3 | - | A215704 | - | A293474 | -
Cf. A215703.

Programs

  • Maple
    dx := proc(m, n) if n = 0 then return [1] fi;
    subs(ln(x) = t, diff(x^(x^m), x$n)): subs(x = 1, %):
    PolynomialTools:-CoefficientList(%,t) end:
    ListTools:-Flatten([seq(dx(1, n), n=0..10)]);
  • Mathematica
    dx[m_, n_] := ReplaceAll[CoefficientList[ReplaceAll[Expand[D[x^x^m, {x, n}]], Log[x] -> t], t], x -> 1];
    Table[dx[1, n], {n, 0, 7}] // Flatten

A281434 Number of terms in the fully expanded n-th derivative of x^(x^x).

Original entry on oeis.org

1, 3, 12, 30, 64, 113, 188, 285, 415, 577, 780, 1017, 1312, 1648, 2044, 2489, 3008, 3583, 4236, 4953, 5760, 6638, 7611, 8664, 9822, 11069, 12426, 13880, 15455, 17131, 18940, 20855, 22912, 25083, 27404, 29844, 32448, 35178, 38075, 41109, 44320, 47672, 51212
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 05 2017

Keywords

Examples

			For n=1, the 1st derivative of x^(x^x) is x^(x^x+x-1) + x^(x^x+x)*log(x) + x^(x^x+x)*log^2(x), so a(1) = 3.
		

Crossrefs

Cf. A293239.

Programs

  • Mathematica
    Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x^x, 42]]]

A290268 Number of terms in the fully expanded n-th derivative of x^(x^2).

Original entry on oeis.org

1, 2, 5, 8, 13, 18, 25, 31, 41, 49, 61, 71, 85, 97, 113, 126, 145, 160, 181, 198, 221, 240, 265, 285, 313, 335, 365, 389, 421, 447, 481, 508, 545, 574, 613, 644, 685, 718, 761, 795, 841, 877, 925, 963, 1013, 1053, 1105, 1146, 1201, 1244, 1301, 1346, 1405, 1452
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 06 2017

Keywords

Examples

			For n = 2, the 2nd derivative of x^(x^2) is 3*x^(x^2) + 2*x^(x^2)*log(x) + x^(x^2+2) + 4*x^(x^2+2)*log(x) + 4*x^(x^2+2)*log^2(x), so a(2) = 5.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, nops(expand(diff(x^(x^2), x$n)))):
    seq(a(n), n = 0..30); # Peter Luschny, Oct 08 2017
  • Mathematica
    Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x^2, 53]]]
    (* Use it only to check the conjecture, not to compute the values: *)
    LinearRecurrence[{0,2,0,-1,0,0,0,1,0,-2,0,1}, {1,2,5,8,13,18,25,31,41,49,61,71}, 54] (* Peter Luschny, Oct 09 2017 *)

Formula

Conjectured g.f.: (1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + x^7 + 2*x^8 + x^9)/((1 - x)*(1 - x^2)*(1 - x^8)).
Conjecture: a(n) = (8*n^2 + 15*n + 14 + (n + 2)*(-1)^n + (2 - 4*sqrt(2)*sin(Pi*n/4))*sin(Pi*n/2))/16.
From Peter Luschny, Oct 09 2017: (Start) Assuming the conjecture:
a(n) = n^2/2 + n + 1 - (n mod 2)*(1/2 + floor((n + 1)/8)).
a(2*n) = A001844(n) and a(2*n + 1) = A293296(n + 1).
Signature of the linear recurrence: {0, 2, 0, -1, 0, 0, 0, 1, 0, -2, 0, 1}. (End)
Showing 1-3 of 3 results.