cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281445 Nonnegative k for which (2*k^2 + 1)/11 is an integer.

Original entry on oeis.org

4, 7, 15, 18, 26, 29, 37, 40, 48, 51, 59, 62, 70, 73, 81, 84, 92, 95, 103, 106, 114, 117, 125, 128, 136, 139, 147, 150, 158, 161, 169, 172, 180, 183, 191, 194, 202, 205, 213, 216, 224, 227, 235, 238, 246, 249, 257, 260, 268, 271, 279, 282, 290, 293, 301, 304, 312, 315
Offset: 1

Views

Author

Bruno Berselli, Apr 13 2017

Keywords

Comments

For prime d < 11, (2*k^2 + 1)/d can provide integers when d = 3 (A186424).
Corresponding values of (2*k^2 + 1)/11 are listed in A179088.
All k == 4 or 7 (mod 11). - Robert Israel, Apr 25 2017

Crossrefs

Cf. A179088.
Cf. A001651 (nonnegative k for which (2*k^2 + 1)/3 is an integer).

Programs

  • Magma
    &cat [[11*n+4, 11*n+7]: n in [0..30]];
  • Maple
    seq(seq(11*i+j,j=[4,7]),i=0..50); # Robert Israel, Apr 25 2017
  • Mathematica
    Select[Range[400], IntegerQ[(2*#^2 + 1)/11] &]
  • Sage
    [k for k in range(400) if ((2*k^2+1)/11).is_integer()]
    

Formula

O.g.f.: x*(4 + 3*x + 4*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 4 - 5*exp(-x)/4 - 11*(1 - 2*x)*exp(x)/4.
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = (22*n - 5*(-1)^n - 11)/4. Therefore: a(2*h) = 11*h - 4, a(2*h+1) = 11*h + 4.
If h>0,
h*a(n) + (6*h - 5*(-1)^h - 11)/4 = a(h*n) for odd n; otherwise:
h*a(n) + 4*(h - 1) = a(h*n). Some special cases:
h=2: 2*a(n) - 1 = a(2*n) for odd n, 2*a(n) + 4 = a(2*n) for even n;
h=3: 3*a(n) + 3 = a(3*n) for odd n, 3*a(n) + 8 = a(3*n) for even n;
h=4: 4*a(n) + 2 = a(4*n) for odd n, 4*a(n) + 12 = a(4*n) for even n;
h=5: 5*a(n) + 6 = a(5*n) for odd n, 5*a(n) + 16 = a(5*n) for even n, and so on.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/22)*Pi/11. - Amiram Eldar, Feb 27 2023
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(Pi/22)*sec(3*Pi/22).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(3*Pi/22). (End)