cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A281490 Expansion of f(x, x^3) * f(x, x^8) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 1, 1, 0, 1, 3, 1, 0, 1, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 0, 3, 0, 1, 1, 0, 4, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 3, 1, 0, 0, 0, 0, 1, 3
Offset: 0

Views

Author

Michael Somos, Jan 29 2017

Keywords

Examples

			G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^29 + 2*q^65 + q^101 + q^137 + q^173 + q^245 + q^281 + q^317 + q^353 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x, x^9] QPochhammer[ -x^8, x^9] QPochhammer[ x^9], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(36*n + 29, d, kronecker(-4, d)) / 2)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); n = 36*n + 29; A = factor(n); prod(k=1, matsize(A) [1], [p, e] = A[k, ]; if(p%4==1, e+1, 1-e%2)) / 2)};

Formula

f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2)*(x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 7)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-8)) * (1 + x^(9*k-1)) * (1 - x^(9*k)).
Convolution of sequences A010054 and A281814.
2 * a(n) = A281451(32*n + 25).

A281491 Expansion of f(x, x^3) * f(x^2, x^7) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 1, 2, 1, 1, 1, 2, 0, 1, 0, 1, 1, 3, 1, 0, 1, 0, 3, 1, 1, 0, 0, 2, 2, 1, 2, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 0, 4, 2, 0, 0, 1, 1, 0, 0, 1, 1, 3, 1, 1, 0, 1, 2, 1, 2, 0
Offset: 0

Views

Author

Michael Somos, Jan 29 2017

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^10 + x^12 + ...
G.f. = q^17 + q^53 + q^89 + 2*q^125 + q^197 + q^233 + q^269 + 2*q^305 + ...
		

Crossrefs

Cf. A281451.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x^2, x^9] QPochhammer[ -x^7, x^9] QPochhammer[ x^9], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(36*n + 17, d, kronecker(-4, d)) / 2)};

Formula

f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, 0, 1, -2, 1, -1, 2, -1, 0, -1, 2, -1, 1, -2, 1, 0, 1, -2, ...].
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 5)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-7)) * (1 + x^(9*k-2)) * (1 - x^(9*k)).
2 * a(n) = A281451(8*n + 3).

A281492 Expansion of f(x, x^3) * f(x^4, x^5) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 1, 1, 2, 3, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 1, 2, 1, 0, 4, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 3, 2, 1, 1, 2, 2, 1, 1, 2, 0, 2, 0, 1, 2, 2, 2, 0
Offset: 0

Views

Author

Michael Somos, Jan 29 2017

Keywords

Examples

			G.f. = 1 + x + x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + x^8 + 2*x^10 + x^11 + ...
G.f. = q^5 + q^41 + q^113 + q^149 + 2*q^185 + 2*q^221 + q^257 + q^293 + ...
		

Crossrefs

Cf. A281451.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x^4, x^9] QPochhammer[ -x^5, x^9] QPochhammer[ x^9], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(36*n + 5, d, kronecker(-4, d)) / 2)};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, -1, 1, 0, 2, -1, 1, -2, 0, -2, 1, -1, 2, 0, 1, -1, 1, -2, ...].
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 1)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-5)) * (1 + x^(9*k-4)) * (1 - x^(9*k)).
2 * a(n) = A281451(128*n + 17).

A281452 Expansion of f(x, x) * f(x^5, x^13) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 4, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 0, 5, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 2
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
2 * a(n) = b(9*n + 4) = with b = A105673, A105673, A122857, A258034, A259761. -2 * a(n) = b(9*n + 4) with b = A138949, A256280, A258292.
a(4*n) = A281453(n). a(8*n + 6) = 2 * A281490(n). a(16*n + 12) = A281451(n).
a(32*n + 4) = 2 * A281492(n). a(64*n + 28) = A281452(n). a(128*n + 60) = 2 * A281491(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/3 = 1.0471975... (A019670). - Amiram Eldar, Jan 20 2025

A281453 Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
Convolution of A000122 and A205808.
Showing 1-5 of 5 results.