A267816
Decimal representation of the n-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 3, 23, 111, 479, 1983, 8063, 32511, 130559, 523263, 2095103, 8384511, 33546239, 134201343, 536838143, 2147418111, 8589803519, 34359476223, 137438429183, 549754765311, 2199021158399, 8796088827903, 35184363700223, 140737471578111, 562949919866879
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
-
rule=221; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
A281481
a(n) = 2^(n - 1) * (2^n + 1) + 1.
Original entry on oeis.org
2, 4, 11, 37, 137, 529, 2081, 8257, 32897, 131329, 524801, 2098177, 8390657, 33558529, 134225921, 536887297, 2147516417, 8590000129, 34359869441, 137439215617, 549756338177, 2199024304129, 8796095119361, 35184376283137, 140737496743937, 562949970198529
Offset: 0
Similar sequences:
A085601 (2^(n + 1) * (2^n + 1) + 1),
A092431 (2^(n - 1) * (2^n + 1) - 1),
A092440 (2^(n + 1) * (2^n - 1) + 1),
A129868 (2^(n - 1) * (2^n - 1) - 1),
A134169 (2^(n - 1) * (2^n - 1) + 1),
A267816 (2^(n + 1) * (2^n - 1) - 1),
A281482 (2^(n + 1) * (2^n + 1) - 1).
-
[2^(n - 1) * (2^n + 1) + 1: n in [0..200]];
-
Vec((2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017
A335077
a(n) sets a record for side length k of zero-triangle in a rotationally symmetrical XOR-triangle.
Original entry on oeis.org
1, 11, 39, 543, 2391, 9559, 38231, 152919, 611671, 2446679, 9786711, 39146839, 156587351, 626349399, 2505397591, 10021590359, 40086361431, 160345445719, 641381782871, 2565527131479, 10262108525911, 41048434103639, 164193736414551, 656774945658199, 2627099782632791
Offset: 1
XOR-triangles T(a(n)) for 2 <= n <= 5, with "." = 0, "@" = 1:
a(4) = 543
a(3) = 39 @ . . . . @ @ @ @ @
a(2) = 11 @ . . . @ . . . .
@ . . @ @ @ @ . . @ @ . . .
@ . @ @ @ . @ . . @ . @ . @ . .
@ @ . @ @ @ . @ @ @ @ @ .
. @ . . @ . . . . @
@ . @ . . . @
@ . . @
. @
a(5) = 2391 @
@ . . @ . @ . @ . @ @ @
@ . @ @ @ @ @ @ @ . .
@ @ . . . . . . @ .
. @ . . . . . @ @
@ @ . . . . @ .
. @ . . . @ @
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
.
a(6) = 9559
@ . . @ . @ . @ . @ . @ @ @
@ . @ @ @ @ @ @ @ @ @ . .
@ @ . . . . . . . . @ .
. @ . . . . . . . @ @
@ @ . . . . . . @ .
. @ . . . . . @ @
@ @ . . . . @ .
. @ . . . @ @
@ @ . . @ .
. @ . @ @
@ @ @ .
. . @
. @
@
-
With[{s = Rest[Import["https://oeis.org/A334769/b334769.txt", "Data"][[All, -1]] ]}, Map[With[{w = NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]}, If[Length@ # == 0, 1, Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #] &@ ReplacePart[ConstantArray[0, Max@ #[[All, 1]]], Map[#1 -> #2 & @@ # &, #]]] &@ Tally@ Flatten@ Array[If[# == 1, Map[If[First@ # == 1, Nothing, Length@ #] &, Split@ w[[#]] ], Map[If[First@ # == -1, Length@ #, Nothing] &, Split[w[[#]] - Most@ w[[# - 1]] ] ]] &, Length@ w]] /. -Infinity -> 0 &, s[[1 ;; 30]] ] ]
(* or *)
Join[{1}, Array[2^(# + 1)*(2^# + 1) - 1 &, 4, 1], LinearRecurrence[{5, -4}, {2391, 9559}, 21]]
(* or *)
Rest@ CoefficientList[Series[(12 - 27 x)/(12 x^2 - 15 x + 3) - 56 x^4 - 112 x^3 - 28 x^2 - 10 x - 4, {x, 0, 25}], x] (* Michael De Vlieger, Jun 01 2020 *)
Showing 1-3 of 3 results.
Comments