A281485 Triangular array T(n,k) = k Sum_{j=0..k-1} (-1)^j binomial(k-1,j) (n-1-j)^(n-1), 1<=k<=n, read by rows.
1, 1, 2, 4, 6, 6, 27, 38, 36, 24, 256, 350, 330, 240, 120, 3125, 4202, 3960, 3000, 1800, 720, 46656, 62062, 58506, 45360, 29400, 15120, 5040, 823543, 1087214, 1025388, 806904, 546000, 312480, 141120, 40320, 16777216, 22024830, 20781690, 16524144, 11493720, 6985440, 3598560, 1451520, 362880
Offset: 1
Examples
First seven rows: 1 1 2 4 6 6 27 38 36 24 256 350 330 240 120 3125 4202 3960 3000 1800 720 46656 62062 58506 45360 29400 15120 5040
Links
- Rui Duarte and António Guedes de Oliveira, The number of parking functions with center of a given length, arXiv:1611.03707 (2016).
Crossrefs
Programs
-
Mathematica
Table[Which[n == k == 1, 1, k == 1, (n - 1)^(n - 1), k == n, n!, True, k Sum[(-1)^j*Binomial[k - 1, j] (n - 1 - j)^(n - 1), {j, 0, k - 1}]], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 23 2017 *)
Formula
T(n,k) = k*Sum_{j=0..k-1} (-1)^j*binomial(k-1,j)*(n-1-j)^(n-1).
T(n,k) = k!*Sum_{j_1+j_2+...+j_k=n-k} (n-1)^(j_1)*(n-2)^(j_2)*...*(n-k)^(j_k).
Comments