A281492 Expansion of f(x, x^3) * f(x^4, x^5) in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 1, 1, 2, 3, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 1, 2, 1, 0, 4, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 3, 2, 1, 1, 2, 2, 1, 1, 2, 0, 2, 0, 1, 2, 2, 2, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + x^8 + 2*x^10 + x^11 + ... G.f. = q^5 + q^41 + q^113 + q^149 + 2*q^185 + 2*q^221 + q^257 + q^293 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A281451.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ -x^4, x^9] QPochhammer[ -x^5, x^9] QPochhammer[ x^9], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, sumdiv(36*n + 5, d, kronecker(-4, d)) / 2)};
Formula
f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 18 sequence [1, -1, 1, 0, 2, -1, 1, -2, 0, -2, 1, -1, 2, 0, 1, -1, 1, -2, ...].
G.f.: (Sum_{k>0} x^(k*(k - 1)/2)) * (Sum_{k in Z} x^(k*(9*k + 1)/2)).
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^(2*k-1)) * (1 + x^(9*k-5)) * (1 + x^(9*k-4)) * (1 - x^(9*k)).
2 * a(n) = A281451(128*n + 17).