cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281500 Reduced denominators of f(n) = (n+1)/(2^(2+n)-2) with A026741(n+1) as numerators.

Original entry on oeis.org

2, 3, 14, 15, 62, 63, 254, 255, 1022, 1023, 4094, 4095, 16382, 16383, 65534, 65535, 262142, 262143, 1048574, 1048575, 4194302, 4194303, 16777214, 16777215, 67108862, 67108863, 268435454, 268435455, 1073741822, 1073741823, 4294967294, 4294967295, 17179869182, 17179869183
Offset: 0

Views

Author

Paul Curtz, Jan 23 2017

Keywords

Comments

f(n) = (n+1)/A000918(n+2) = 1/2, 2/6, 3/14, 4/30, 5/62, 6/126, 7/254, 8/510, 9/1022, 10/2046, 11/4094, 12/8190, ... .
Partial reduction: 1/2, 1/3, 3/14, 2/15, 5/62, 3/63, 7/254, 4/255, 9/1022, 5/1023, 11/4094, 6/4095, ... = A026741(n+1)/a(n).
Full reduction: 1/2, 1/3, 3/14, 2/15, 5/62, 1/21, 7/254, ... = A111701(n+1)/(2, 3, 14, 15, 62, 21, ... )
A164555(n+1)/A027642(n) = 1/2, 1/6, 0, -1/30, 0, 1/42, ... = f(n) * A198631(n)/A006519(n+1) = 1, 1/2, 0, -1/4, 0, 1/2, ... .).
Via f(n), we go from the second fractional Euler numbers to the second Bernoulli numbers.
a(n) mod 10: periodic sequence of length 4: repeat [2, 3, 4, 5].
a(n) differences table:
. 2, 3, 14, 15, 62, 63, 254, 255, ...
. 1, 11, 1, 47, 1, 191, 1, 767, ... see A198693
. 10, -10, 46, -46, 190, -190, 766, -766, ... see A096045, from Bernoulli(2n).
Extension of a(n): a(-2) = -1, a(-1) = 0.

Crossrefs

Programs

  • Mathematica
    a[n_] := (3+(-1)^n)*(2^(n+1)-1)/2; (* or *) a[n_] := If[EvenQ[n], 4^(n/2+1)-2, 4^((n+1)/2)-1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 24 2017 *)
  • PARI
    Vec((2 + 3*x + 4*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)) + O(x^50)) \\ Colin Barker, Jan 24 2017

Formula

From Colin Barker, Jan 24 2017: (Start)
G.f.: (2 + 3*x + 4*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = 5*a(n-2) - 4*a(n-4) for n>3. (End)
From Jean-François Alcover, Jan 24 2017: (Start)
a(n) = (3 + (-1)^n)*(2^(n + 1) - 1)/2.
a(n) = 4^((n + 1 + ((n + 1) mod 2))/2) - 1 - ((n + 1) mod 2). (End)
a(n) = a(n-2) + A117856(n+1) for n>1.
a(2*k) = 4^(k + 1) - 2, a(2*k+1) = a(2*k) + 1 = 4^(k+1) - 1.
a(2*k) + a(2*k+1) = A267921(k+1).