A281531 a(n) is the least numerator k such that the proper fraction k/n needs three or more terms as an Egyptian fraction, or 0 if no such numerator exists.
0, 0, 0, 4, 0, 3, 7, 7, 8, 5, 11, 3, 6, 7, 7, 4, 13, 3, 13, 9, 5, 5, 17, 4, 6, 8, 12, 4, 14, 3, 7, 5, 8, 11, 17, 3, 6, 9, 17, 4, 18, 3, 7, 11, 7, 5, 21, 3, 8, 7, 11, 4, 13, 9, 13, 7, 7, 7, 28, 3, 5, 13, 7, 4, 10, 3, 11, 11, 13, 5, 23, 3, 6, 11, 9, 5, 11, 3, 19
Offset: 2
Keywords
Links
Programs
-
Magma
lst:=[]; for n in [2..80] do for k in [1..n-1] do f:=k/n; x:=1; v:=0; if Numerator(f) eq 1 then v:=1; else while f lt 2/x do if Numerator(f-1/x) eq 1 then v:=1; break; end if; x+:=1; end while; end if; if v eq 0 then Append(~lst, k); break; end if; if k eq n-1 then Append(~lst, 0); end if; end for; end for; lst;
-
Maple
f:= proc(n) option remember; local k,T; T:= numtheory:-divisors(n^2); for k from 2 to n-1 do g:= igcd(k,n); if g > 1 then r:= procname(n/g); if k = r*g then return k fi; else if not member(-n mod k, T mod k) then return k fi fi od; 0 end proc; map(f, [$2..100]); # Robert Israel, Dec 25 2019
-
Mathematica
a[n_] := a[n] = Module[{k, T}, T = Divisors[n^2]; For[k = 2, k <= n - 1, k++, g = GCD[k, n]; If[g > 1, r = a[n/g]; If[k == r g, Return [k]], If[FreeQ[Mod[T, k], Mod[-n, k]], Return [k]]]]; 0]; a /@ Range[2, 100] (* Jean-François Alcover, Oct 06 2020, after Robert Israel *)
Comments