cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A282530 Number of finite FRUTE loops of order n up to isomorphism.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Muniru A Asiru, Feb 17 2017

Keywords

Comments

For a groupoid Q and x in Q, define the right (left) translation map R_x: Q->Q by yR_x=yx (L_x: Q->Q by yL_x=xy). A loop is a groupoid Q with neutral element 1 in which all translations are bijections in Q. A loop Q is called a FRUTE loop if it satisfies the identity (x.xy)z=(y.xz)x for all x, y, z in Q. The smallest associative non-commutative finite FRUTE loop is of order 8, the quaternion group having 8 elements.

Examples

			a(8)=2 since there are 2 FRUTE loops of order 8, one of which is the quaternion group of order 8 and a(16)=6 since there are 6 FRUTE loops of order 16.
		

Crossrefs

Showing 1-1 of 1 results.