cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281572 Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - mu(j)^2*x^j), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 6, 11, 18, 30, 45, 68, 98, 139, 192, 266, 357, 478, 632, 828, 1074, 1386, 1769, 2250, 2840, 3566, 4452, 5534, 6842, 8427, 10335, 12624, 15361, 18634, 22519, 27137, 32598, 39047, 46645, 55580, 66050, 78313, 92630, 109330, 128760, 151342, 177517, 207833, 242878, 283326, 329944, 383598, 445246, 516013
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 24 2017

Keywords

Comments

Total number of parts in all partitions of n into squarefree parts (A005117).
Convolution of A034444 and A073576.

Examples

			a(4) = 11 because we have [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 2 + 2 + 3 + 4 = 11.
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i), {i, 1, nmax}]/Product[1 - MoebiusMu[j]^2 x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - mu(j)^2*x^j).