A281572 Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - mu(j)^2*x^j), where mu() is the Moebius function (A008683).
1, 3, 6, 11, 18, 30, 45, 68, 98, 139, 192, 266, 357, 478, 632, 828, 1074, 1386, 1769, 2250, 2840, 3566, 4452, 5534, 6842, 8427, 10335, 12624, 15361, 18634, 22519, 27137, 32598, 39047, 46645, 55580, 66050, 78313, 92630, 109330, 128760, 151342, 177517, 207833, 242878, 283326, 329944, 383598, 445246, 516013
Offset: 1
Keywords
Examples
a(4) = 11 because we have [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 2 + 2 + 3 + 4 = 11.
Programs
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i), {i, 1, nmax}]/Product[1 - MoebiusMu[j]^2 x^j, {j, 1, nmax}], {x, 0, nmax}], x]]
Formula
G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - mu(j)^2*x^j).
Comments