cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281584 Solutions x to the negative Pell equation x^2 - 15*y^2 = -11 with x, y > 0.

Original entry on oeis.org

2, 7, 23, 58, 182, 457, 1433, 3598, 11282, 28327, 88823, 223018, 699302, 1755817, 5505593, 13823518, 43345442, 108832327, 341257943, 856835098, 2686718102, 6745848457, 21152486873, 53109952558, 166533176882, 418133772007, 1311112928183, 3291960223498
Offset: 1

Views

Author

Colin Barker, Jan 25 2017

Keywords

Comments

The corresponding values of y are in A237262.

Examples

			7 is in the sequence because (x, y) = (7, 2) is a solution to x^2 - 15*y^2 = -11.
		

Crossrefs

Cf. A237262.

Programs

  • Magma
    [n le 2 select 5*n-3 else IsOdd(n) select (11*Self(n-1)-4*Self(n-2))/3 else (11*Self(n-1)-3*Self(n-2))/4: n in [1..30]]; // Bruno Berselli, Jan 25 2017
  • Mathematica
    LinearRecurrence[{0, 8, 0, -1}, {2, 7, 23, 58}, 30] (* Bruno Berselli, Jan 25 2017 *)
  • PARI
    Vec(x*(1 + x)*(2 + x)*(1 + 2*x) / (1 - 8*x^2 + x^4) + O(x^30))
    

Formula

G.f.: x*(1 + x)*(2 + x)*(1 + 2*x) / (1 - 8*x^2 + x^4).
a(n) = 8*a(n-2) - a(n-4) for n>4.
From Bruno Berselli, Jan 25 2017: (Start)
a(n) = (11*a(n-1) - 4*a(n-2))/3 if n is odd, a(n) = (11*a(n-1) - 3*a(n-2))/4 if n is even (see also R. J. Mathar in A237262).
a(n)*a(n-3) - a(n-1)*a(n-2) = -15*(7-(-1)^n)/2, with n>3. Example: for n=8, a(8)*a(5) - a(7)*a(6) = 3598*182 - 1433*457 = -15*3. (End)