cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281593 a(n) = b(n) - Sum_{j=0..n-1} b(j) with b(n) = binomial(2*n, n).

Original entry on oeis.org

1, 1, 3, 11, 41, 153, 573, 2157, 8163, 31043, 118559, 454479, 1747771, 6740059, 26055459, 100939779, 391785129, 1523230569, 5931153429, 23126146629, 90282147849, 352846964649, 1380430179489, 5405662979649, 21186405207549, 83101804279101, 326199124351701
Offset: 0

Views

Author

Peter Luschny, Feb 25 2017

Keywords

Crossrefs

A279561(n) = (a(n)+1)/2.
A057552(n) = (a(n+2)-1)/2.
A162551(n) = a(n+1)-a(n).

Programs

  • Maple
    b := n -> binomial(2*n, n): s := n -> add(b(j), j=0..n):
    a := n -> b(n) - s(n-1): seq(a(n), n=0..26);
    # second program:
    A281593 := series(exp(2*x)*BesselI(0, 2*x) - exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 27): seq(n!*coeff(A281593, x, n), n=0..26); # Mélika Tebni, Feb 27 2024
  • Mathematica
    a[n_] = Binomial[2n,n](1+Hypergeometric2F1[1,n+1/2,n+1,4])+I/Sqrt[3];
    Table[Simplify[a[n]],{n,0,17}]
    CoefficientList[Series[(2x -1)/((x -1) Sqrt[(1 -4x)]), {x, 0, 26}], x] (* Robert G. Wilson v, Feb 25 2017 *)
    a[0]=1; a[n_]:=a[n-1] + 2*(n-1)*CatalanNumber[n-1];Table[a[n],{n,0,26}] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    a(n) = binomial(2*n,n)-sum(j=0,n-1,binomial(2*j,j)); \\ Indranil Ghosh, Mar 03 2017
    
  • PARI
    c(n) = binomial(2*n,n)/(n+1);
    a(n) = if(n==0,1,a(n-1) + 2*(n-1)*c(n-1)); \\ Indranil Ghosh, Mar 03 2017
    
  • Python
    import math
    def C(n,r): return f(n)/f(r)/f(n-r)
    def A281593(n):
        s=0
        for j in range(0,n):
            s+=C(2*j,j)
        return C(2*n,n)-s # Indranil Ghosh, Mar 03 2017
  • Sage
    def A():
        a = b = c = 1
        yield 1
        while True:
            yield a
            c = (c * (4 * b - 2)) // (b + 1)
            a += 2 * b * c
            b += 1
    a = A(); print([next(a) for  in (0..25)]) # _Peter Luschny, Feb 25 2017
    

Formula

a(n) = [x^n] (2*x-1)/(sqrt(1-4*x)*(x-1)).
a(n) = binomial(2*n,n)*(1+hypergeom([1,n+1/2],[n+1],4))+I/sqrt(3).
a(n+1) = a(n) + 2*n*Catalan(n).
a(n) ~ (4/3)*4^n/sqrt((8*n+2)*Pi/2).
D-finite with recurrence n*a(n) +(-7*n+6)*a(n-1) +2*(7*n-13)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
E.g.f.: exp(2*x)*BesselI(0,2*x) - exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. - Mélika Tebni, Feb 27 2024