cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281612 Expansion of Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 8, 12, 20, 28, 45, 62, 92, 127, 181, 244, 340, 452, 614, 809, 1077, 1401, 1841, 2371, 3071, 3923, 5026, 6363, 8078, 10149, 12769, 15939, 19899, 24676, 30604, 37726, 46489, 57007, 69849, 85211, 103871, 126119, 152987, 184955, 223349, 268898, 323384, 387830, 464587, 555168, 662619, 789084
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of semiprime parts (A001358) in all partitions of n.
Convolution of A000041 and A086971.

Examples

			a(6) = 3 because we have [6], [5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 1 + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).