cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281615 Expansion of Sum_{i>=1} x^(i*(i+1)/2)/(1 - x^(i*(i+1)/2)) / Product_{j>=1} (1 - x^(j*(j+1)/2)).

Original entry on oeis.org

1, 2, 4, 6, 8, 13, 17, 21, 30, 37, 44, 60, 72, 83, 107, 127, 144, 181, 210, 236, 289, 333, 371, 446, 507, 562, 664, 750, 825, 965, 1083, 1187, 1371, 1530, 1668, 1912, 2122, 2307, 2618, 2896, 3138, 3540, 3897, 4211, 4717, 5180, 5581, 6222, 6803, 7317, 8116, 8853, 9497, 10486, 11401, 12215, 13430, 14572, 15576, 17067
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into nonzero triangular numbers (A000217).
Convolution of A007294 and A007862.

Examples

			a(6) = 13 because we have [6], [3, 3], [3, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 1 + 2 + 4 + 6 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(i (i + 1)/2)/(1 - x^(i (i + 1)/2)), {i, 1, nmax}]/Product[1 - x^(j (j + 1)/2), {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i*(i+1)/2)/(1 - x^(i*(i+1)/2)) / Product_{j>=1} (1 - x^(j*(j+1)/2)).
a(n) ~ exp(3*zeta(3/2)^(2/3) * (Pi*n)^(1/3)/2) * zeta(3/2)^(1/3) / (2^(3/2) * sqrt(3) * Pi^(4/3) * n^(5/6)). - Vaclav Kotesovec, Sep 15 2021