cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281625 Numbers m>0 such that m = k*(reversal of k*m) for some k<=m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353
Offset: 1

Views

Author

Jaroslav Krizek, Feb 11 2017

Keywords

Comments

Generalization of palindrome numbers in base 10.
Sequence is not the same as A061917 or A169824; a(188) = 3267 is not a term of these sequences.
Supersequence of A002113 (palindromes in base 10) and A061917.
Sequences a(n)_k of numbers m such that m = k*(reversal of k*m) for k <= 30 and n >= 1:
a(n)_1 = A002113(n+1) (palindromes > 0 in base 10);
a(n)_2 = 4356, 43956, 439956, 4399956, 43999956, 439999956, ...;
a(n)_3 = 3267, 32967, 329967, 3299967, 32999967, 329999967, ...;
a(n)_5 = a(n)_20 = 10*a(n)_2 = 43560, 439560, 4399560, 43999560, ...;
a(n)_8 = 6600, 6606600, 66006600, 660006600, ...;
a(n)_10 = 10*A002113(n+1): 10, 20, 30, 40, 50, 60, 70, 80, 90, 110, ... ;
a(n)_30 = 10*a(n)_3 = 32670, 329670, 3299670, 32999670, ...

Examples

			3267 is in the sequence because 3267 = 3*(reversal of 3*3267) = 3*(reversal of 9801) = 3*1089.
		

Crossrefs

Programs

  • Magma
    [n: k in [1..n], n in [1..1000] | n eq k * Seqint(Reverse(Intseq(k*n)))];
  • Maple
    read("transforms") :
    isA281625 := proc(n)
        for k from 1 to n do
            if k*digrev(k*n) = n then
                return true ;
            end if;
        end do:
        false;
    end proc:
    A281625 := proc(n)
        option remember ;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA281625(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A281625(n),n=1..100) ; # R. J. Mathar, Aug 06 2019
  • Mathematica
    Select[Range@ 353, Function[n, Total@ Boole@ Map[Function[k, n == k FromDigits@ Reverse[IntegerDigits[k n]]], Range@ n] > 0]] (* Michael De Vlieger, Feb 11 2017 *)