A281625 Numbers m>0 such that m = k*(reversal of k*m) for some k<=m.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 110, 111, 121, 131, 141, 151, 161, 171, 181, 191, 200, 202, 212, 220, 222, 232, 242, 252, 262, 272, 282, 292, 300, 303, 313, 323, 330, 333, 343, 353
Offset: 1
Examples
3267 is in the sequence because 3267 = 3*(reversal of 3*3267) = 3*(reversal of 9801) = 3*1089.
Links
- Jaroslav Krizek, Table of n <= 5000
Programs
-
Magma
[n: k in [1..n], n in [1..1000] | n eq k * Seqint(Reverse(Intseq(k*n)))];
-
Maple
read("transforms") : isA281625 := proc(n) for k from 1 to n do if k*digrev(k*n) = n then return true ; end if; end do: false; end proc: A281625 := proc(n) option remember ; if n = 1 then 1; else for a from procname(n-1)+1 do if isA281625(a) then return a; end if; end do: end if; end proc: seq(A281625(n),n=1..100) ; # R. J. Mathar, Aug 06 2019
-
Mathematica
Select[Range@ 353, Function[n, Total@ Boole@ Map[Function[k, n == k FromDigits@ Reverse[IntegerDigits[k n]]], Range@ n] > 0]] (* Michael De Vlieger, Feb 11 2017 *)
Comments