A281648 (Numerator of Bernoulli(2*n)) read mod n.
0, 1, 1, 3, 0, 5, 0, 7, 1, 9, 0, 5, 0, 7, 5, 15, 0, 11, 0, 9, 1, 11, 0, 13, 0, 13, 19, 7, 0, 19, 0, 31, 11, 17, 0, 11, 0, 19, 13, 13, 0, 37, 0, 33, 35, 23, 0, 37, 0, 39, 34, 39, 0, 11, 5, 35, 19, 29, 0, 29, 0, 31, 61, 63, 0, 55, 0, 51, 23, 21, 0, 43, 0, 37, 50, 19
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Mod[Numerator[BernoulliB[2 n]], n]; Array[f, 77] (* Robert G. Wilson v, Jan 26 2017 *)
-
PARI
a(n)=numerator(bernfrac(2*n))%n \\ Charles R Greathouse IV, Jan 27 2017
-
Ruby
def bernoulli(n) ary = [] a = [] (0..n).each{|i| a << 1r / (i + 1) i.downto(1){|j| a[j - 1] = j * (a[j - 1] - a[j])} ary << a[0] } ary end def A281648(n) a = bernoulli(2 * n) (1..n).map{|i| a[2 * i].numerator % i} end
Formula
a(n) = A000367(n) mod n.
Comments