A253576
Primes p such that digits of p do not appear in p^7.
Original entry on oeis.org
3, 7, 43, 7757, 31333
Offset: 1
3 and 3^7 = 2187 have no digits in common, hence 3 is in the sequence.
Cf. similar sequences listed in
A253574.
-
Select[Prime[Range[1000000]], Intersection[IntegerDigits[#], IntegerDigits[#^7]]=={} &]
-
from sympy import isprime
A253576_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**7)) == set() and isprime(n)]
# Chai Wah Wu, Jan 05 2015
A281148
Numbers k such that k and k^6 have no digits in common.
Original entry on oeis.org
2, 3, 8, 9, 13, 14, 22, 33, 44, 52, 72, 77, 87, 92, 222, 322, 622, 7737, 7878, 30302, 44449, 72777, 844844, 44744744
Offset: 1
92 is a term because 92^6 = 606355001344 has no digit 2 or 9.
-
fQ[n_] := Intersection[IntegerDigits[n], IntegerDigits[n^6]] == {}; Select[ Range@45000000, Mod[#, 5] > 1 && fQ@# &] (* Robert G. Wilson v, Jan 29 2017 *)
-
isok(n) = #setintersect(Set(digits(n)), Set(digits(n^6))) == 0;
Showing 1-2 of 2 results.
Comments