A281682 Decimal expansion of Sum_{n>=2} 1/A000166(n).
1, 6, 3, 8, 2, 2, 7, 0, 7, 4, 5, 0, 5, 3, 7, 0, 6, 4, 7, 5, 4, 2, 8, 9, 3, 1, 1, 4, 1, 5, 1, 1, 2, 2, 6, 6, 1, 0, 6, 3, 5, 9, 3, 2, 4, 9, 6, 4, 4, 4, 3, 6, 1, 6, 4, 7, 2, 3, 2, 6, 2, 8, 2, 8, 7, 2, 6, 3, 0, 5, 8, 2, 9, 4, 4, 0, 6, 8, 2, 2, 3, 9, 8, 1, 8, 3, 0, 3, 9, 5, 6, 7, 2, 0, 7, 3, 2, 9, 9, 6, 0, 9, 1, 0, 8, 1, 3, 9, 0, 9, 1, 5, 3
Offset: 1
Examples
1.63822707450537064754289311415112266106359324964443616472326282872630582...
Links
- Wikipedia, Subfactorial/Derangement definition
Crossrefs
Cf. A000166.
Programs
-
Derive
PrecisionDigits ≔ 1000 NotationDigits ≔ 1000 sum(1/ROUND(n!/e), n, 2, 500)
-
Mathematica
a[n_]:=If[n>0, Round[n!/E], 1]; RealDigits[Sum[1/a[n], {n, 2, 500}], 10, 113][[1]](* Indranil Ghosh, Mar 12 2017 *)
Formula
Equals Sum_{n>=2} 1/round(n!/e).