cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281819 Even numbers k such that half the sum of the even divisors equals the sum of the odd divisors and both are (the same) square.

Original entry on oeis.org

2, 6, 162, 230, 238, 434, 530, 686, 690, 714, 770, 994, 1034, 1054, 1302, 1358, 1490, 1590, 1778, 1870, 2058, 2310, 2354, 2414, 2438, 2786, 2930, 2982, 3002, 3102, 3162, 3290, 3298, 3374, 3410, 3542, 3830, 4074, 4202, 4318, 4402, 4470, 4718, 4806, 5334, 5510, 5610, 5798, 5990, 6014, 6286
Offset: 1

Views

Author

Michel Lagneau, Feb 03 2017

Keywords

Comments

a(n) == 2 mod 4.
The corresponding squares are 1, 2^2, 11^2, 12^2, 12^2, 16^2, 18^2, 20^2, 24^2, 24^2, 24^2, 24^2, 24^2, 24^2, 32^2, 28^2, 30^2, 36^2, 32^2, 36^2, 40^2,...
There exists a subsequence {a(n)} intersection {A281707} = 6, 434, 1302, 1778, 7874, 23622, 114674, ... of numbers of the form 2p1*p2*...pk where p1, p2,...,pk are Mersenne primes = 3, 7, 31, 127, 8191,... (see A000668).
The corresponding squares are also powers of 2: 2^2, 2^8, 2^10, 2^10, 2^12,...

Examples

			162 is in the sequence because the divisors are {1, 2, 3, 6, 9, 18, 27, 54, 81, 162} => half sum of even divisors = (2 + 6 + 18 + 54 + 162)/2 = 11^2 and sum of odd divisors = 1 + 3 + 9 + 27 + 81 = 11^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2 to 10^5 do:
    x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
       for k from 1 to n1 do:
        if irem(x[k],2)=0
         then
         s0:=s0+ x[k]:
         else
         s1:=s1+ x[k]:
        fi:
      od:
        s11:=sqrt(s1):s22:=sqrt(s0/2):
        if floor(s11)=s11 and floor(s22)=s22 and s11=s22
         then
         printf(`%d, `,n):
         else
        fi:
    od:
  • PARI
    forstep(k=1,1e3,2,if(issquare(sigma(k)), print1(2*k", "))) \\ Charles R Greathouse IV, Feb 06 2017
    
  • PARI
    is(n)=n%4==2 && issquare(sigma(n/2)) \\ Charles R Greathouse IV, Feb 06 2017

A293356 Even integers k such that lambda(sum of even divisors of k) = sum of odd divisors of k.

Original entry on oeis.org

2, 20, 40, 48, 68, 176, 212, 304, 328, 944, 1360, 1712, 1888, 2320, 2344, 2864, 4240, 7120, 7888, 7984, 8448, 8960, 11920, 12032, 14416, 14592, 15536, 17492, 20224, 21520, 23984, 24208, 24592, 25904, 26112, 28160, 29440, 30464, 34560, 35920, 36352, 40528, 41296
Offset: 1

Views

Author

Michel Lagneau, Oct 07 2017

Keywords

Comments

Or even integers k such that A002322(A146076(k)) = A000593(k).
Observations:
The primes a(n)/4: {5, 17, 53, 4373, 13121, ...} are of the form 2*3^m - 1, m > 0 (A079363).
The primes a(n)/8: {5, 41, 293, 4941257, ...} are of the form 6*7^m - 1, m = 0, 1, ... (primes in A198688).
The set of the primes {a(n)/16} = {3, 11, 19, 59, 107, 179, 499, 971, 1499, 1619, ...} contains the primes of the form 4*3^(2m+1) - 1 = {11, 107, 971, ...}, m = 0, 1, ...

Examples

			68 is in the sequence because A002322(A146076(68)) = A002322(108) = 18 and A000593(68) = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 2 by 2 to 10^6 do:
    x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
       for k from 1 to n1 do:
        if type(x[k],even)
         then
         s0:=s0+ x[k]:
         else
         s1:=s1+ x[k]:
        fi:
      od:
        if s1=lambda(s0)
         then
         printf(`%d, `,n):
         else
        fi:
    od:
  • Mathematica
    fQ[n_] :=
    Block[{d = Divisors@n},
      CarmichaelLambda[Plus @@ Select[d, EvenQ]] ==
    Plus @@ Select[d, OddQ]]; Select[2 Range@2000, fQ] (* Robert G. Wilson v, Oct 07 2017 *)
  • PARI
    is(n)=if(n%2, return(0)); my(s=valuation(n,2),d=sigma(n>>s)); lcm(znstar(d*(2^(s+1)-2))[2])==d \\ Charles R Greathouse IV, Dec 26 2017

Extensions

Edited by Robert Israel, Dec 28 2017
Showing 1-2 of 2 results.