cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281715 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 2, 7, 4, 8, 3, 14, 8, 6, 16, 5, 29, 38, 14, 9, 32, 8, 61, 90, 97, 17, 14, 64, 13, 126, 305, 294, 245, 22, 22, 128, 21, 265, 902, 1410, 937, 631, 30, 35, 256, 34, 553, 2710, 5781, 6417, 3166, 1625, 43, 56, 512, 55, 1162, 8376, 23798, 37781, 29849, 10738, 4234
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2017

Keywords

Comments

Table starts
...1..1..1.....2......3........5.........8..........13...........21
...2..3..7....14.....29.......61.......126.........265..........553
...4..4..8....38.....90......305.......902........2710.........8376
...8..6.14....97....294.....1410......5781.......23798.......103034
..16..9.17...245....937.....6417.....37781......214045......1321909
..32.14.22...631...3166....29849....252867.....1987696.....17241122
..64.22.30..1625..10738...142023...1721319....18779855....230037168
.128.35.43..4234..37285...677045..11737418...178547832...3076165855
.256.56.64.11017.129586..3244671..80326035..1704685390..41247350230
.512.90.98.28652.452042.15605137.550174620.16297041786.554236736742

Examples

			Some solutions for n=4 k=4
..0..0..1..0. .0..0..1..0. .0..1..0..1. .0..0..1..1. .0..0..0..1
..1..1..0..1. .1..1..0..1. .1..0..1..0. .1..1..0..0. .0..0..1..1
..1..1..1..0. .1..1..1..0. .0..1..0..1. .1..1..0..0. .0..0..1..1
..1..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..1..1. .1..1..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A001611(n+1).
Row 1 is A000045(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3) for n>4
k=3: a(n) = 2*a(n-1) -a(n-3) for n>6
k=4: [order 15] for n>16
k=5: [order 24] for n>28
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) for n>3
n=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3) -2*a(n-4) +4*a(n-5)
n=3: [order 20] for n>21
n=4: [order 72] for n>73