A281715 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1, 1, 2, 1, 3, 4, 2, 7, 4, 8, 3, 14, 8, 6, 16, 5, 29, 38, 14, 9, 32, 8, 61, 90, 97, 17, 14, 64, 13, 126, 305, 294, 245, 22, 22, 128, 21, 265, 902, 1410, 937, 631, 30, 35, 256, 34, 553, 2710, 5781, 6417, 3166, 1625, 43, 56, 512, 55, 1162, 8376, 23798, 37781, 29849, 10738, 4234
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..0. .0..0..1..0. .0..1..0..1. .0..0..1..1. .0..0..0..1 ..1..1..0..1. .1..1..0..1. .1..0..1..0. .1..1..0..0. .0..0..1..1 ..1..1..1..0. .1..1..1..0. .0..1..0..1. .1..1..0..0. .0..0..1..1 ..1..1..0..0. .0..0..0..0. .0..0..1..0. .0..0..1..1. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-3) for n>4
k=3: a(n) = 2*a(n-1) -a(n-3) for n>6
k=4: [order 15] for n>16
k=5: [order 24] for n>28
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) for n>3
n=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3) -2*a(n-4) +4*a(n-5)
n=3: [order 20] for n>21
n=4: [order 72] for n>73
Comments