A281765 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 4, 0, 2, 14, 10, 0, 5, 40, 47, 20, 0, 8, 110, 152, 90, 38, 0, 15, 280, 609, 560, 201, 68, 0, 26, 698, 2138, 2808, 1872, 374, 120, 0, 46, 1696, 7466, 13968, 12191, 5948, 672, 208, 0, 80, 4052, 25798, 68362, 85844, 49986, 18358, 1172, 358, 0, 139, 9564, 87397
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0. .0..0..1..1. .0..0..1..0. .0..1..0..0. .0..1..1..0 ..0..0..1..1. .0..1..1..1. .0..1..0..1. .1..0..1..1. .0..0..1..1 ..1..1..1..1. .0..0..1..1. .1..1..1..0. .0..1..1..1. .0..0..1..1 ..1..1..0..1. .0..1..1..1. .1..1..0..0. .1..0..1..1. .0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
k=3: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>11
k=4: [order 29] for n>32
k=5: [order 48] for n>57
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
n=2: [order 9]
n=3: [order 40] for n>41
Comments