cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281773 Number of distinct topologies on an n-set that have exactly 4 open sets.

Original entry on oeis.org

0, 0, 1, 9, 43, 165, 571, 1869, 5923, 18405, 56491, 172029, 521203, 1573845, 4742011, 14266989, 42882883, 128812485, 386765131, 1160950749, 3484162963, 10455110325, 31370573851, 94122207309, 282387593443, 847204723365, 2541698056171, 7625261940669
Offset: 0

Views

Author

Submitted on behalf of Moussa Benoumhani by Geoffrey Critzer, Jan 29 2017

Keywords

Examples

			a(3) = 9 because we have: {{}, {c}, {a,b}, {a,b,c}} with 3 labelings and {{}, {c}, {b,c}, {a,b,c}} with 6 labelings.
		

Crossrefs

The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777, A281778, A281779, A281780.
Partial sums are given in A298564.

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 3 x)/((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 27}], x] (* Michael De Vlieger, Jan 21 2018 *)
  • PARI
    a(n) = stirling(n,2,2) + 3!*stirling(n,3,2) \\ Colin Barker, Jan 30 2017
    
  • PARI
    concat(vector(2), Vec(x^2*(1 + 3*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017

Formula

a(n) = A000392(n+1) + 3*A000392(n).
E.g.f.: (exp(x)-1)^3 + (exp(x)-1)^2/2!.
From Colin Barker, Jan 30 2017: (Start)
G.f.: x^2*(1 + 3*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>3.
a(n) = 2 - 5*2^(n-1) + 3^n for n>0. (End)