cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281778 Number of distinct topologies on an n-set that have exactly 10 open sets.

Original entry on oeis.org

0, 0, 0, 0, 24, 900, 18030, 276570, 3680964, 45065160, 523292010, 5859909990, 63862084704, 680829769620, 7122705252390, 73284607133010, 742843170653244, 7429450873589280, 73416173732059170, 717721593866613630, 6949589106333898584, 66721599431782204140
Offset: 0

Views

Author

Submitted on behalf of Moussa Benoumhani by Geoffrey Critzer, Jan 29 2017

Keywords

Crossrefs

The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by A000012, A000918, A281773, A028244, A281774, A281775, A281776, A281777,A281778, A281779, A281780.

Programs

  • PARI
    concat(vector(4), Vec(6*x^4*(4 - 30*x - 265*x^2 + 3570*x^3 - 10839*x^4 + 22680*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017

Formula

a(n) = 4! Stirling2(n, 4) + 11/2*5! Stirling2(n, 5) + 73/8*6! Stirling2(n, 6) + 15/2*7! Stirling2(n, 7) + 7/2*8! Stirling2(n, 8) + 9! Stirling2(n, 9).
G.f.: (6*(4 - 30*x - 265*x^2 + 3570*x^3 - 10839*x^4 + 22680*x^5))*x^4/Product_{j=1..9} (1-j*x). - Robert Israel, Jan 29 2017