cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281784 Number of permutations of size n avoiding the three vincular patterns 2-41-3, 3-14-2 and 3-41-2.

Original entry on oeis.org

1, 2, 6, 21, 82, 346, 1547, 7236, 35090, 175268, 897273, 4690392, 24961300, 134917123, 739213795, 4099067786, 22973964976, 129998127216, 741951610676, 4267733183951, 24722711348105, 144147076572858, 845460619537567, 4986014094568416, 29553202933497989, 175988793822561947, 1052569034807964425, 6320797287983675428, 38100643422386086309, 230476496238489596293, 1398812189780917895946, 8516159717810715750712, 51999675864641162206960, 318388601290603235387353, 1954555567303560704554767, 12028490623505389875097231, 74197729371621673254309374, 458706129189543207063584184, 2841808950641424998337843123
Offset: 1

Views

Author

Mathilde Bouvel, Mar 01 2017

Keywords

Comments

a(n) is the number of permutations of size n that are both Baxter and twisted Baxter.
a(n) is also the number of excursions in the positive quarter-plane, using n steps, and with step (multi-)set {(-1,0),(0,-1),(1,-1),(1,0),(0,1),(0,0),(0,0)}.

Examples

			For n=4, there are a(4)=21 permutations that avoid 2-41-3, 3-14-2 and 3-41-2 (all permutations of size 4 except 2413, 3142 and 3412).
		

Crossrefs

Baxter and twisted Baxter permutations are both enumerated by the Baxter numbers A001181.

Programs

  • Maple
    S:=x*y*z:
    s[1]:=1:
    for en from 2 to 200 do
    x*y/(1-y)*(subs(y=1,S))-x/(1-y)*S+x*z*S+x*y*z/(1-z)*(subs(z=1,S))-x*y*z/(1-z)*S;
    S:=normal(%):
    s[en]:=subs(x=1,z=1,y=1,S);
    od:
    # Veronica Guerrini, Mar 01 2017

Formula

The generating function for a(n) is A(x;1,1) where A(x;y,z) satisfies A(x;y,z) = x*y*z + (x/(1-y))*(y*A(x;1,z) - A(x;y,z)) + x*z*A(x;y,z) + (x*y*z/(1-z))*(A(x;y,1) - A(x;y,z)).
Consequently, neither A(x;1,1) nor A(x;y,z) are D-finite (see preprint of Bouvel et al.).