cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281812 Expansion of Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2, where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 8, 19, 44, 99, 218, 473, 1012, 2144, 4504, 9395, 19482, 40189, 82534, 168829, 344145, 699334, 1417146, 2864510, 5776889, 11626101, 23353272, 46827677, 93747221, 187399328, 374092162, 745817021, 1485138398, 2954041789, 5869650947, 11651500427, 23107388495, 45787040997, 90652188078, 179340159228
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into squarefree parts (A005117).

Examples

			a(4) = 19 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
		

Crossrefs

Programs

  • Mathematica
    nmax = 36; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i, {i, 1, nmax}]/(1 - Sum[MoebiusMu[j]^2 x^j, {j, 1, nmax}])^2, {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2.