A281812 Expansion of Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2, where mu() is the Moebius function (A008683).
1, 3, 8, 19, 44, 99, 218, 473, 1012, 2144, 4504, 9395, 19482, 40189, 82534, 168829, 344145, 699334, 1417146, 2864510, 5776889, 11626101, 23353272, 46827677, 93747221, 187399328, 374092162, 745817021, 1485138398, 2954041789, 5869650947, 11651500427, 23107388495, 45787040997, 90652188078, 179340159228
Offset: 1
Keywords
Examples
a(4) = 19 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 2 + 2 + 3 + 2 + 3 + 3 + 4 = 19.
Programs
-
Mathematica
nmax = 36; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i, {i, 1, nmax}]/(1 - Sum[MoebiusMu[j]^2 x^j, {j, 1, nmax}])^2, {x, 0, nmax}], x]]
Formula
G.f.: Sum_{i>=1} mu(i)^2*x^i / (1 - Sum_{j>=1} mu(j)^2*x^j)^2.
Comments