A281817 a(n) = 2*Sum_{k odd} k!*Stirling2(n,k)/(k + 1).
0, 1, 1, 4, 19, 116, 871, 7764, 80179, 941812, 12403711, 181056404, 2901669739, 50656307508, 956922611191, 19449063226324, 423206168046499, 9816562636678004, 241805428075379311, 6303793707327637524, 173401707643671303259
Offset: 0
Links
- Bai-Ni Guo, István Mező, Feng Qi, An explicit formula for Bernoulli polynomials in terms of r-Stirling numbers of the second kind, arxiv:1402.2340v1 [math.CO], 2014.
Programs
-
Maple
seq(add((2*k+1)!*Stirling2(n,2*k+1)/(k + 1), k = 0..floor((n-1)/2)), n = 0..20);
Formula
E.g.f.: ( -x - log(2 - exp(x)) )/(exp(x) - 1) = x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 116*x^5/5! + .... (use the first equation on page 3 of Guo et al. with r = 0 and s = 1).
For prime p, a(p) = 1 (mod p). Conjecture: for prime p, a(2*p) = 1 (mod p).
Comments