A281819 Even numbers k such that half the sum of the even divisors equals the sum of the odd divisors and both are (the same) square.
2, 6, 162, 230, 238, 434, 530, 686, 690, 714, 770, 994, 1034, 1054, 1302, 1358, 1490, 1590, 1778, 1870, 2058, 2310, 2354, 2414, 2438, 2786, 2930, 2982, 3002, 3102, 3162, 3290, 3298, 3374, 3410, 3542, 3830, 4074, 4202, 4318, 4402, 4470, 4718, 4806, 5334, 5510, 5610, 5798, 5990, 6014, 6286
Offset: 1
Keywords
Examples
162 is in the sequence because the divisors are {1, 2, 3, 6, 9, 18, 27, 54, 81, 162} => half sum of even divisors = (2 + 6 + 18 + 54 + 162)/2 = 11^2 and sum of odd divisors = 1 + 3 + 9 + 27 + 81 = 11^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 10^5 do: x:=divisors(n):n1:=nops(x):s0:=0:s1:=0: for k from 1 to n1 do: if irem(x[k],2)=0 then s0:=s0+ x[k]: else s1:=s1+ x[k]: fi: od: s11:=sqrt(s1):s22:=sqrt(s0/2): if floor(s11)=s11 and floor(s22)=s22 and s11=s22 then printf(`%d, `,n): else fi: od:
-
PARI
forstep(k=1,1e3,2,if(issquare(sigma(k)), print1(2*k", "))) \\ Charles R Greathouse IV, Feb 06 2017
-
PARI
is(n)=n%4==2 && issquare(sigma(n/2)) \\ Charles R Greathouse IV, Feb 06 2017
Comments