A281822 Least number k such that (k+n)^2 contains k as a substring.
1, 8, 6, 1, 4, 9, 62, 6, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 1, 5, 1, 2, 9, 2, 4, 2, 92, 9, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 4, 4, 2, 4, 4, 2, 4, 1, 5, 1, 1, 5, 2, 4, 2, 4, 2, 1, 5, 1, 6, 5, 2, 4, 8, 6
Offset: 0
Examples
a(1) = 8 because (8 + 1)^2 = 9^2 = 81 contains 8 as a substring and it is the least number with this property.
Links
- Paolo P. Lava, Table of n, a(n) for n = 0..10000
Programs
-
Maple
with(numtheory): P:= proc(q) local a,b,d,j,k,n,ok; for n from 0 to q do for k from 1 to q do a:=ilog10(k)+1; b:=(n+k)^2; d:=ilog10((k+n)^2)-ilog10(k)+1; ok:=0; for j from 1 to d do if k=(b mod 10^a) then ok:=1; break; else b:=trunc(b/10); fi; od; if ok=1 then print(k); break; fi; od; od; end: P(10^6);
Extensions
Typo in definition corrected by Harvey P. Dale, Feb 27 2017.
Entries, Maple code and b-file corrected at the suggestion of Harvey P. Dale, Feb 28 2017.