A281863 Alternating powers of 60 and 10 times powers of 60.
1, 10, 60, 600, 3600, 36000, 216000, 2160000, 12960000, 129600000, 777600000, 7776000000, 46656000000, 466560000000, 2799360000000, 27993600000000, 167961600000000, 1679616000000000, 10077696000000000, 100776960000000000, 604661760000000000
Offset: 0
References
- Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
- Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
- Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,60).
Programs
-
Mathematica
LinearRecurrence[{0,60},{1,10},21] (* or *) a[0]=1;a[1]=10;a[n_]:=60*a[n-2];Table[a[n],{n,0,20}] (* Indranil Ghosh, Feb 21 2017 *)
-
PARI
Vec((1 + 10*x) / (1 - 60*x^2) + O(x^30)) \\ Colin Barker, Feb 21 2017
Formula
a(2*n) = 60^(n/2), a(2*n+1) = 10*60^((n-1)/2), n >= 0.
From Colin Barker, Feb 21 2017: (Start)
a(n) = 60*a(n-2) for n>1.
G.f.: (1 + 10*x) / (1 - 60*x^2). (End)
E.g.f.: cosh(2*sqrt(15)*x) + sqrt(5/3)*sinh(2*sqrt(15)*x). - Stefano Spezia, Sep 08 2024
Comments