cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281863 Alternating powers of 60 and 10 times powers of 60.

Original entry on oeis.org

1, 10, 60, 600, 3600, 36000, 216000, 2160000, 12960000, 129600000, 777600000, 7776000000, 46656000000, 466560000000, 2799360000000, 27993600000000, 167961600000000, 1679616000000000, 10077696000000000, 100776960000000000, 604661760000000000
Offset: 0

Views

Author

Wolfdieter Lang, Feb 19 2017

Keywords

Comments

These numbers are the values for the positions in the Sumerian (and Babylonian) alternating sexagesimal - decimal system (used at least up to 10*60^2 = 36000, but here extended).
For the numbers in this mixed base system see A055643. For the number of symbols needed for representing n see A131650. For the number of digits (including 0) of the representation of n see A282622.

References

  • Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
  • Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
  • Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,60},{1,10},21] (* or *) a[0]=1;a[1]=10;a[n_]:=60*a[n-2];Table[a[n],{n,0,20}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    Vec((1 + 10*x) / (1 - 60*x^2) + O(x^30)) \\ Colin Barker, Feb 21 2017

Formula

a(2*n) = 60^(n/2), a(2*n+1) = 10*60^((n-1)/2), n >= 0.
From Colin Barker, Feb 21 2017: (Start)
a(n) = 60*a(n-2) for n>1.
G.f.: (1 + 10*x) / (1 - 60*x^2). (End)
E.g.f.: cosh(2*sqrt(15)*x) + sqrt(5/3)*sinh(2*sqrt(15)*x). - Stefano Spezia, Sep 08 2024