A281864 Number of sets of exactly four positive integers <= n having a square element sum.
0, 0, 2, 5, 8, 14, 23, 34, 49, 69, 93, 123, 160, 204, 255, 315, 383, 462, 554, 658, 775, 904, 1046, 1205, 1384, 1581, 1797, 2031, 2282, 2556, 2857, 3183, 3535, 3913, 4316, 4748, 5211, 5706, 6235, 6798, 7393, 8025, 8696, 9406, 10159, 10956, 11793, 12673, 13599
Offset: 4
Keywords
Examples
a(6) = 2: {1,4,5,6}, {2,3,5,6}. a(7) = 5: {1,2,6,7}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}. a(8) = 8: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7}, {2,3,5,6}, {4,6,7,8}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..4000
Crossrefs
Column k=4 of A281871.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(i
(t+1)*(2*i-t)/2, 0, `if`(i>n, 0, b(n-i, i-1, t-1))+b(n, i-1, t)))) end: a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+add( b(j^2-n, n-1, 3), j=isqrt(n-6)..isqrt(4*n-6))) end: seq(a(n), n=4..60); -
Mathematica
Table[Count[Subsets[Range[n],{4}],?(IntegerQ[Sqrt[Total[#]]]&)],{n,4,60}] (* _Harvey P. Dale, Mar 06 2019 *)