cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A281879 Non-palindromic numbers k such that sigma(k) | sigma(R(k)), where R(k) is the digit reversal of k.

Original entry on oeis.org

15, 16, 17, 59, 129, 165, 176, 187, 205, 273, 276, 299, 429, 446, 478, 528, 599, 825, 1034, 1043, 1135, 1209, 1239, 1515, 1561, 1565, 1616, 1651, 1665, 1717, 1776, 1887, 2086, 2165, 2178, 2255, 2455, 2515, 2618, 2739, 2829, 3489, 4008, 4064, 4475, 4604, 5346, 5795
Offset: 1

Views

Author

Paolo P. Lava, Feb 01 2017

Keywords

Examples

			a(1) = 15 because sigma(51) / sigma(15) = 72 / 24 = 3;
a(2) = 16 because sigma(61) / sigma(16) = 62 / 31 = 2;
a(3) = 17 because sigma(71) / sigma(17) = 72 / 18 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if n<>T(n) then if type(sigma(T(n))/sigma(n),integer) then print(n); fi; fi; od; end: P(10^6);
  • Mathematica
    Select[Range[6000],!PalindromeQ[#]&&Mod[DivisorSigma[1,IntegerReverse[#]],DivisorSigma[ 1,#]] ==0&] (* Harvey P. Dale, Dec 19 2023 *)
Showing 1-1 of 1 results.