A281881 Triangle read by rows: T(n,k) (n>=1, 2<=k<=n+1) is the number of k-sequences of balls colored with at most n colors such that exactly one ball is of a color seen previously in the sequence.
1, 2, 6, 3, 18, 36, 4, 36, 144, 240, 5, 60, 360, 1200, 1800, 6, 90, 720, 3600, 10800, 15120, 7, 126, 1260, 8400, 37800, 105840, 141120, 8, 168, 2016, 16800, 100800, 423360, 1128960, 1451520
Offset: 1
Examples
n=1 => AA -> T(1,2) = 1. n=2 => AA, BB -> T(2,2) = 2; AAB, ABA, BAA, BBA, BAB, ABB -> T(2,3) = 6. Triangle starts: 1 2, 6 3, 18, 36 4, 36, 144, 240 5, 60, 360, 1200, 1800 6, 90, 720, 3600, 10800, 15120 7, 126, 1260, 8400, 37800, 105840, 141120 8, 168, 2016, 16800, 100800, 423360, 1128960, 1451520 9, 216, 3024, 30240, 226800, 1270080, 5080320, 13063680, 16329600 10, 270, 4320, 50400, 453600, 3175200, 16934400, 65318400, 163296000, 199584000
Links
- Jeremy Dover, Table of n, a(n) for n = 1..999
- Jeremy Dover, Answer to Cumulative Distribution Function of Collision Counts
Crossrefs
Programs
-
Mathematica
Table[Binomial[k, 2] n!/(n + 1 - k)!, {n, 8}, {k, 2, n + 1}] // Flatten (* Michael De Vlieger, Feb 02 2017 *)
Formula
T(n,k) = binomial(k,2)*n!/(n+1-k)!.
T(n,k) = n*T(n-1,k-1) + (k-1)*n!/(n+1-k)!.
Comments