A281914 Number of ordered integer pairs (b,c), with -n<=b<=n, -n<=c<=n, such that both roots of 3x^2+bx+c = 0 are rational and b and are not both multiples of 3.
2, 8, 8, 16, 24, 24, 34, 46, 46, 60, 72, 74, 86, 100, 104, 122, 132, 132, 142, 164, 168, 182, 192, 200, 214, 228, 228, 250, 260, 268, 278, 300, 304, 318, 336, 340, 350, 364, 368, 398, 408, 416, 426, 448, 452, 466, 476, 488, 502, 524
Offset: 1
Keywords
Examples
The four quadratics for a(2)=8 and their roots are as follows: 3*x^2 + 2*x + 0 = x(2 + 3*x); x = 0, x = -2/3. 3*x^2 + 2*x - 1 = (1 + x)(- 1 + 3*x); x = -1, x = +1/3. 3*x^2 + 1*x + 0 = x(1 + 3*x); x = 0, x = -1/3. 3*x^2 + 1*x - 2 = (1 + x)(- 2 + 3*x); x = -1, x = +2/3. 3*x^2 - 1*x + 0 = x(- 1 + 3*x); x = 0, x = +1/3. 3*x^2 - 1*x - 2 = (- 1 + x)(2 + 3*x); x = +1, x = -2/3. 3*x^2 - 2*x + 0 = x(- 2 + 3*x); x = 0, x = +2/3. 3*x^2 - 2*x - 1 = (- 1 + x)(1 + 3*x); x = +1, x = -1/3. There is one case where there is an overall factor of 3 which is counted in series A067274.
Crossrefs
Cf. A067274.
Programs
-
Mathematica
a[n_] := 2 (2 + Floor[(n + 1)/3] + Floor[(n - 1)/3] + Floor[(n + 2)/3] + Floor[(n - 2)/3]) + 2 (KroneckerDelta[4, If[n == 4, 4, 0]] - KroneckerDelta[8, If[n == 8, 8, 0]] - KroneckerDelta[9, If[n == 9, 9, 0]] - KroneckerDelta[10, If[n == 10, 10, 0]] - KroneckerDelta[12, If[n == 12, 12, 0]]) + If[n >= 4, 2 (-4 - 2 n - 2 Floor[n/2] + Floor[2 (n + 1)/3] + 2 Sum[Length[Divisors[k]], {k, n}] - 2 Sum[Length[Divisors[k]], {k, Floor[n/3]}]), 0]; (* The KroneckerDelta is a special case correction term. *) a[1] = 2; (* Extends the a[n] series by direct count. *)
Comments