cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lorenz H. Menke, Jr.

Lorenz H. Menke, Jr.'s wiki page.

Lorenz H. Menke, Jr. has authored 14 sequences. Here are the ten most recent ones:

A358399 a(n) is the number of reducible monic quartic polynomials (x^4 + r*x^3 + s*x^2 + t*x + u) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u) <= n).

Original entry on oeis.org

47, 271, 810, 1849, 3395, 5832, 8915, 13242, 18465, 25267, 32874, 43023, 53662, 66957, 81770, 99374, 117564, 140303, 163048, 190757, 219702, 252465, 285820, 326853, 366732
Offset: 1

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = \\ A358399
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
        for (c4 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3,c4]) ), ct += 1 );
        ); ); ); );
        return( ct );
    }
    vector(12, n, a(n) )
    \\ Joerg Arndt, Dec 05 2022

A358400 a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n).

Original entry on oeis.org

139, 1313, 5359, 15365, 34229, 68385, 120421, 200839, 312057, 468827, 669591, 943175, 1274089, 1701441, 2216841, 2856379, 3594651, 4510437, 5541135, 6788823, 8195941, 9845089, 11670925, 13842429, 16191555
Offset: 1

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = \\ A358400
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
        for (c4 = -n, n,
        for (c5 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3,c4,c5]) ), ct += 1 );
        ); ); ); ); );
        return( ct );
    }
    vector(7, n, a(n) )
    \\ Joerg Arndt, Dec 05 2022

A358398 a(n) is the number of reducible monic cubic polynomials x^3 + r*x^2 + s*x + t with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t) <= n).

Original entry on oeis.org

15, 53, 117, 215, 329, 493, 657, 877, 1103, 1383, 1643, 2017, 2325, 2721, 3131, 3601, 4009, 4575, 5031, 5647, 6221, 6849, 7409, 8211, 8849, 9593, 10335, 11199, 11899, 12915, 13671, 14655, 15559, 16535, 17473, 18711, 19619, 20711, 21787, 23099, 24095, 25507, 26571, 27931, 29259
Offset: 1

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Cf. A067274.

Programs

  • PARI
    { a(n) =
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3]) ), ct += 1 );
        ); ); );
        return( ct );
    }
    vector(12, n, a(n) ) \\ Joerg Arndt, Dec 12 2022

Formula

Dubickas (2014) shows that a(n) ~ 2(1+(2/3)Pi^2)n^2 = 15.1598... n^2 for large n.

Extensions

a(26)-a(45) from Hugo Pfoertner, Nov 27 2022

A281914 Number of ordered integer pairs (b,c), with -n<=b<=n, -n<=c<=n, such that both roots of 3x^2+bx+c = 0 are rational and b and are not both multiples of 3.

Original entry on oeis.org

2, 8, 8, 16, 24, 24, 34, 46, 46, 60, 72, 74, 86, 100, 104, 122, 132, 132, 142, 164, 168, 182, 192, 200, 214, 228, 228, 250, 260, 268, 278, 300, 304, 318, 336, 340, 350, 364, 368, 398, 408, 416, 426, 448, 452, 466, 476, 488, 502, 524
Offset: 1

Author

Lorenz H. Menke, Jr., Feb 02 2017

Keywords

Comments

We are not counting the cases where there is a possible overall factor of 3. When there is an overall factor of 3 we get the sequence A067274. These results have been proved and will appear in an upcoming paper.

Examples

			The four quadratics for a(2)=8 and their roots are as follows:
3*x^2 + 2*x + 0 = x(2 + 3*x);         x =  0, x = -2/3.
3*x^2 + 2*x - 1 = (1 + x)(- 1 + 3*x); x = -1, x = +1/3.
3*x^2 + 1*x + 0 = x(1 + 3*x);         x =  0, x = -1/3.
3*x^2 + 1*x - 2 = (1 + x)(- 2 + 3*x); x = -1, x = +2/3.
3*x^2 - 1*x + 0 = x(- 1 + 3*x);       x =  0, x = +1/3.
3*x^2 - 1*x - 2 = (- 1 + x)(2 + 3*x); x = +1, x = -2/3.
3*x^2 - 2*x + 0 = x(- 2 + 3*x);       x =  0, x = +2/3.
3*x^2 - 2*x - 1 = (- 1 + x)(1 + 3*x); x = +1, x = -1/3.
There is one case where there is an overall factor of 3 which is counted in series A067274.
		

Crossrefs

Cf. A067274.

Programs

  • Mathematica
    a[n_] :=
    2 (2 + Floor[(n + 1)/3] + Floor[(n - 1)/3] + Floor[(n + 2)/3] +
         Floor[(n - 2)/3]) +
      2 (KroneckerDelta[4, If[n == 4, 4, 0]] -
         KroneckerDelta[8, If[n == 8, 8, 0]] -
         KroneckerDelta[9, If[n == 9, 9, 0]] -
         KroneckerDelta[10, If[n == 10, 10, 0]] -
         KroneckerDelta[12, If[n == 12, 12, 0]]) +
      If[n >= 4,
       2 (-4 - 2 n - 2 Floor[n/2] + Floor[2 (n + 1)/3] +
          2 Sum[Length[Divisors[k]], {k, n}] -
          2 Sum[Length[Divisors[k]], {k, Floor[n/3]}]), 0];
    (* The KroneckerDelta is a special case correction term. *)
    a[1] = 2; (* Extends the a[n] series by direct count. *)

A281913 Number of ordered integer pairs (b,c), with -n<=b<=n, -n<=c<=n, such that both roots of 2x^2+bx+c=0 are rational and b and c are not both even.

Original entry on oeis.org

4, 4, 12, 12, 22, 24, 36, 36, 50, 54, 64, 68, 78, 82, 100, 100, 110, 118, 128, 132, 150, 154, 164, 168, 182, 186, 204, 208, 218, 230, 240, 240, 258, 262, 280, 288, 298, 302, 320, 324, 334, 346, 356, 360, 386, 390, 400, 404, 418, 426
Offset: 1

Author

Lorenz H. Menke, Jr., Feb 02 2017

Keywords

Comments

We are not counting the cases where there is a possible overall factor of 2. When there is an overall factor of 2 we obtain the sequence A067274. These results have been proved and will appear in an upcoming paper.

Examples

			The four quadratics for a(2)=4 and their roots are as follows:
2*x^2 + 1*x + 0 = x(1 + 2*x);         x =  0, x = -1/2.
2*x^2 + 1*x - 1 = (1 + x)(- 1 + 2*x); x = -1, x = +1/2.
2*x^2 - 1*x + 0 = x(- 1 + 2*x);       x =  0, x = +1/2.
2*x^2 - 1*x - 1 = (- 1+ x)(1 + 2*x);  x = +1, x = -1/2.
There are nine cases where there is an overall factor of 2 which are counted in series A067274.
		

Crossrefs

Cf. A067274.

Programs

  • Mathematica
    a[n_] := If[n >= 3,
       2 (-2 - 2 n + Floor[(n + 1)/2] +
          2 Sum[Length[Divisors[k]], {k, n}] -
          2 Sum[Length[Divisors[k]], {k, Floor[n/2]}]), 0] +
      4 Floor[(n + 1)/2] - 2 KroneckerDelta[6, If[n == 6, 6, 0]];
    (* The KroneckerDelta is a special case correction term. *)
    a[1] = 4; (* Extends the a[n] series by direct count. *)

A281376 Total number of counts where floor(N/k) < floor((N+k)/n) for k = {1, 2, ..., n-1} and N >= n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 11, 17, 25, 35, 47, 60, 77, 95, 115, 138, 164, 191, 222, 254, 290, 329, 370, 412, 460, 510, 562, 617, 676, 736, 802, 869, 940, 1014, 1090, 1169, 1255, 1342, 1431, 1523, 1621, 1720, 1825, 1931, 2041, 2156, 2273, 2391, 2517, 2645, 2777
Offset: 1

Author

Lorenz H. Menke, Jr., Jan 20 2017

Keywords

Examples

			For n = 5, we have counted the cases where floor(N/k) < floor((N+k)/5), k = {1,2,3,4} then a(5) = 3, since this is true only for k = 4 and N = 6, k = 4 and N = 7, and k = 4 and N = 11.
		

Programs

  • Maple
    A281376 := proc(n)
        local a,k,N;
        a := 0 ;
        for k from 1 to n-1 do
            for N from n do
                if floor(N/k) < floor((N+k)/n) then
                    a := a +1 ;
                elif N >= (k+2*n)*k/(n-k) then
                    break;
                end if;
            end do:
        end do:
        a ;
    end proc:
    seq(A281376(n),n=1..10) ; # R. J. Mathar, Feb 03 2017
  • Mathematica
    a[n_] :=
      Block[{lhs, rhs, count},
       count = 0;
       Do[lhs = Floor[H1/k];
        rhs = Floor[(H1 + k)/n];
        If[lhs < rhs, count++], {k, 1, n - 1}, {H1,
         n, (n^2 - 3 n + 1) + 10}]; (* the 10 is simply guard counts *)
       Return[count]];
    a281376[n_] :=
    Sum[Floor[j/d], {d, Ceiling[(n - 3)/3]}, {j, n - (2 d + 1)}]
    (* Hartmut F. W. Hoft, Jan 25 2017; based on the first formula above *)
  • PARI
    a(n) = sum(d = 1, ceil((n-3)/3), sum(j = 1, n-(2*d+1), j\d)); \\ Michel Marcus, Jan 29 2017

Formula

a(n) = Sum_{d=1..ceiling((n-3)/3)} Sum_{j=1..n-(2*d+1)} floor(j/d). - Jon E. Schoenfield, Jan 23 2017
a(n) = Sum_{d=1..ceiling(n/3)-1} ((j+1)*(j*d/2 + n mod d)), where j = floor(n/d) - 3. - Jon E. Schoenfield, Jan 24 2017

A270544 Number of ordered pairs (i,j) with |i|, |j| <= n, |i * j| <= n, and i odd.

Original entry on oeis.org

0, 6, 10, 20, 24, 34, 42, 52, 56, 70, 78, 88, 96, 106, 114, 132, 136, 146, 158, 168, 176, 194, 202, 212, 220, 234, 242, 260, 268, 278, 294, 304, 308, 326, 334, 352, 364, 374, 382, 400, 408, 418, 434, 444, 452, 478, 486, 496, 504, 518, 530, 548, 556, 566, 582, 600
Offset: 0

Author

Lorenz H. Menke, Jr., Mar 18 2016

Keywords

Examples

			a(0) = 0 from (i,j) = ().
a(1) = 6 from (i,j) = (-1,+-1), (1,+-1), (+-1,0).
a(2) = 10: (-1,+-2), (-1,+-1), (+-1,0), (1, +-2), (1,+-1).
		

Crossrefs

The corresponding sequence where i is even is A270543.

Programs

  • Mathematica
    a[n_] := 2 Floor[(n+1)/2] + 4 Sum[Floor[n/(2k+1)], {k,0,Floor[(n+1)/2]-1}]
  • PARI
    a(n) = {my(nb = 0); for(i=-n, n, if ((i % 2), for(j=-n, n, if (abs(i*j) <= n, nb++);););); nb;} \\ Michel Marcus, Apr 10 2016

Formula

a(n) = 2*floor((n+1)/2) + 4*Sum_{k=0..floor((n+1)/2)-1}floor(n/(2k+1)).
a(n) = A226355(n) - A270543(n).

A270543 Number of ordered pairs (i,j) of integers with |i|, |j| <= n, |i * j| <= n, and i even.

Original entry on oeis.org

1, 3, 11, 13, 25, 27, 39, 41, 57, 59, 71, 73, 93, 95, 107, 109, 129, 131, 147, 149, 169, 171, 183, 185, 213, 215, 227, 229, 249, 251, 271, 273, 297, 299, 311, 313, 341, 343, 355, 357, 385, 387, 407, 409, 429, 431, 443, 445, 481, 483, 499, 501, 521, 523, 543, 545
Offset: 0

Author

Lorenz H. Menke, Jr., Mar 18 2016

Keywords

Examples

			a(0) = 1 from (i,j) = (0,0).
a(1) = 3 from (i,j) = (0,0), (0,1), (0,-1).
a(2) = 11: (0,0), (0,+-1), (0,+-2), (+-2, 0), (+-2,+-1).
		

Crossrefs

The corresponding sequence where i is odd is A270544.
Cf. A226355.

Programs

  • Mathematica
    a[n_]:=1+2n+2Floor[n/2]+4Sum[Floor[n/(2k)],{k,1,Floor[n/2]}]
  • PARI
    a(n) = {my(nb = 0); for (i=-n, n, if ((i % 2) == 0, for(j=-n, n, if (abs(i*j) <= n, nb++);););); nb;}

Formula

a(n) = 1 + 2*n + 2*floor(n/2) + 4*Sum_{k=1..floor(n/2)}floor(n/(2k)).
a(n) = A226355(n) - A270544(n).

Extensions

a(44) = 429 corrected by Georg Fischer, Sep 13 2023

A270383 Number of ordered pairs (i,j) with i >= j, |i|, |j| <= n, and |i * j| <= n.

Original entry on oeis.org

1, 6, 12, 18, 27, 33, 43, 49, 59, 68, 78, 84, 98, 104, 114, 124, 137, 143, 157, 163, 177, 187, 197, 203, 221, 230, 240, 250, 264, 270, 288, 294, 308, 318, 328, 338, 359, 365, 375, 385, 403, 409, 427, 433, 447, 461, 471, 477, 499, 508, 522
Offset: 0

Author

Lorenz H. Menke, Jr., Mar 15 2016

Keywords

Examples

			For n = 2 the a(2) = 12 pairs are (2,1), (2,0), (2,-1), (1,1), (1,0), (1,-1), (1,-2), (0,0), (0,-1), (0,-2), (-1,-1), and (-1,-2). - _Danny Rorabaugh_, Apr 05 2016
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=2Sum[Length[Divisors[k]],{k,1,n}]+Floor[Sqrt[n]]+2n+1
  • PARI
    a(n) = 2*sum(k=1, n, numdiv(k)) + sqrtint(n) + 2*n + 1; \\ Michel Marcus, Apr 05 2016

Formula

a(n) = 2*(Sum_{k=1..n} tau(k)) + floor(sqrt(n)) + 2*n + 1, where tau(k) = A000005(k) is number of divisors of k.
a(n) = A067274(n) + 2 for n >= 1.

A269067 Numerator of the volume of d dimensional symmetric convex cuboid with constraints |x1 + x2 + ... xd| <= 1 and |x1|, |x2|, ..., |xd| <= 1.

Original entry on oeis.org

2, 3, 16, 115, 88, 5887, 19328, 259723, 124952, 381773117, 41931328, 20646903199, 866732192, 467168310097, 2386873693184, 75920439315929441, 97261697912, 5278968781483042969, 2387693641959232, 9093099984535515162569, 10872995484706511008, 168702835448329388944396777, 38650653745373963289088
Offset: 1

Author

Lorenz H. Menke, Jr., Feb 19 2016

Keywords

Comments

Reference A. Dubickas shows that all the volume integrals are rational with V[d] <= 2^d.

Examples

			For d = 3 the volume is 16/3, for each volume we have V[1] = 2, V[2] = 3, V[3] = 16/3, V[4] = 115/12, V[5] = 88/5, V[6] = 5887/180, V[7] = 19328/315, V[8] = 259723/2240, V[9] = 124952/567, V[10] = 381773117/907200, etc.
		

Crossrefs

The denominator sequence is given by A266913.
Cf. A199832 The rational coefficient of the leading coefficient of the empirical rows duplicates these volume integrals in sequence. This is not a proof.

Programs

  • Mathematica
    V[d_] := Integrate[Boole[Abs[Sum[x[i], {i, 1, d}]] <= 1],
      Table[x[i], {i, 1, d}] \[Element]
       Cuboid[Table[-1, {i, 1, d}], Table[+1, {i, 1, d}]]] (* Lorenz H. Menke, Jr. *)
    v[d_] := With[{a = Array[x,d]}, RegionMeasure @ ImplicitRegion[ a ∈ Cuboid[-Table[1, d], Table[1, d]] && -1 <= Total[a] <= 1, a]] (* Carl Woll *)
    v[d_] := 2^(d+1)/(Pi) Integrate[Sin[t]^(d+1)/t^(n+1), {t, 0, Infinity}] (* Carl Woll *)

Extensions

a(11)-a(23) from Lorenz H. Menke, Jr., May 10 2018