A281969 Number of sets of exactly n positive integers <= n+6 having a square element sum.
1, 2, 5, 11, 23, 43, 74, 124, 197, 296, 434, 627, 875, 1188, 1600, 2128, 2755, 3522, 4511, 5661, 6983, 8637, 10610, 12781, 15343, 18497, 21937, 25751, 30416, 35702, 41266, 47772, 55531, 63578, 72405, 83101, 94662, 106544, 120507, 136663, 152742, 170490, 191873
Offset: 0
Keywords
Examples
a(4) = 23: {1,2,3,10}, {1,2,4,9}, {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {1,5,9,10}, {1,6,8,10}, {1,7,8,9}, {2,3,4,7}, {2,3,5,6}, {2,4,9,10}, {2,5,8,10}, {2,6,7,10}, {2,6,8,9}, {3,4,8,10}, {3,5,7,10}, {3,5,8,9}, {3,6,7,9}, {4,5,6,10}, {4,5,7,9}, {4,6,7,8}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
A diagonal of A281871.
Programs
-
Mathematica
Table[Count[Subsets[Range[n+6],{n}],?(IntegerQ[Sqrt[Total[#]]]&)],{n,0,50}] (* _Harvey P. Dale, Aug 21 2017 *)
Formula
a(n) = A281871(n+6,n).